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ABSTRACT

Recent computer architecture trends herald the arrival of massive multiprocessors with more
than a hundred processor cores within a single package. In this setting, on-chip communication
becomes increasingly important, as parallel programs increase the amount of data sharing and
signaling between cores. Unfortunately, traditional on-chip networks have been proven to not scale
well in terms of latency or energy consumption, slowing down the computation, and jeopardizing
the scalability of hundred-core processors.

On-chip wireless networks are a novel interconnect paradigm that holds considerable promise
for overcoming the communication challenges left unmet by wired networks-on-chip, and for en-
abling such massive multicore chips.

In this thesis, we propose several applications of on-chip wireless technology for manycore
architectures, namely: Replica, a manycore that uses wireless communication for synchronization
and communication-intensive data; WiDir, which uses on-chip wireless technology to augment
a conventional invalidation-based directory cache coherence protocol; and WiPackage, a chiplet-
based architecture that uses a wireless network to attain scalable communication.

Besides the aforementioned applications of on-chip wireless technology, in this thesis we also
address some of the challenges that come with the technology. One of the main challenges of on-
chip wireless technology is the design of methods that provide fast and efficient access to the wire-
less channel while adapting to the constant traffic changes within and across applications. Hence,
we propose Fuzzy-Token, a simple medium access control protocol that leverages the unique prop-
erties of the on-chip scenario to deliver efficient and low-latency access irrespective of the appli-
cation characteristics.
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CHAPTER 1: THESIS CONTRIBUTION AND OVERVIEW

Semiconductor devices have shrunk relentlessly during the last decade, leading to stunning lev-
els of chip integration. As a result, recent years have witnessed the emergence of computing
architectures that integrate up to a thousand processor cores and memory on a single die. This
includes heterogeneous systems with integrated GPUs [1], neural network accelerators [2], server
processors [3], and general-purpose manycore CPUs [4]. Processor cores communicate among
them and with memory to share data and synchronize execution. The importance of communica-
tion grows with the number of cores, to the point of having become the key performance bottleneck
in manycore processors [5, 6].

Modern processors rely on Networks-on-Chip (NoCs) to serve inter-core traffic [7, 8, 9, 10, 11].
NoCs are essentially packet-switched networks of on-chip routers and links, typically arranged in a
2D grid as shown in Figure 1.1. Routers enqueue packets, compute routes, arbitrate, and dequeue
packets in each hop towards the destination [5], incurring delays and energy consumption. To
connect the routers, the mesh topology is the de facto standard due to its simple layout and low
link length [5]. While this approach is more scalable and efficient than buses, the average hop
count scales proportionally to

√
N, where N is core count, and therefore the latency and energy

of NoCs start to become a problem at hundred cores [5, 6]. This is especially so for broadcasts
and for messages that need to traverse a high number of routers before arriving to the intended
destination [12]. The increasing latency raises the likelihood of stalling remote processor cores as
they wait for results or to synchronize, which throttles execution. Slowdowns of 2− 3× have been
estimated in processors with several tens of cores [12, 13] and even worse slacks are expected at
higher core counts. There are other, high-radix topologies that reduce the network diameter [14],
but at the cost of a non-trivial chip area and energy cost at the routers.

To guarantee the scalability of processor architectures to thousand cores and beyond, emerging
interconnect technologies such as 3D [15, 16, 17], nanophotonics [18, 19, 20], or wireless [21, 22,
23] have been proposed, each with its pros and cons [24]. Wireless technology has shown promise
due to its inherent broadcast nature and very low latency for chip-wide transmissions, better than
in conventional NoCs by an order of magnitude [25]. Moreover, the lack of additional wiring
between cores provides a network-level flexibility unattainable with other technologies [26].

Wireless Network-on-Chip (WNoC) is enabled by recent advances in CMOS RF technology,
allowing the on-chip integration of millimeter-wave and sub-terahertz antennas and transceivers
[22, 27, 28, 29, 30, 31, 32, 33]. WNoC architectures [34, 35, 36, 37, 38, 39, 40, 41] are attractive
because they can transfer a message chip-wide with a latency of only a few clock cycles, regardless
of the size of the chip or the number of cores. Each core or group of cores is integrated with an
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antenna and a transceiver, as shown in Figure 1.1. Small antennas in the mmWave bands and
beyond [30, 42, 43, 44] can be feasibly integrated, and use a broadcast-based protocol [45, 46,
47]. Figure 1.1 shows vertical monopole antennas based on Through-Silicon Vias (TSVs), which
perforate the bulk silicon [44]. Information coming from a core is modulated by the transceiver
and sent by the antenna. The resulting signals propagate inside the chip package, bouncing off
the metallic heat sink until they reach the receivers. Propagation causes signals to be attenuated
a few tens of dBs, mainly due to spreading loss and the relatively high dielectric loss at the bulk
silicon [48, 49, 50]. However, these losses are tolerable [31], and prevent the enclosed package to
act as a reverberation chamber.

More importantly, complete multiprocessor architectures based on the WNoC paradigm have
demonstrated execution speedups of up to 10× (1.89× in average) and reduced the multiproces-
sor energy consumption by an average of 38% [26, 51]. This has been achieved by considering
bandwidths of a few tens of GHz and low-order modulations achievable with current technology.

Figure 1.1: Wired NoC mesh augmented with a wireless NoC, within a conventional flip-chip
package with one vertical monopole antenna and transceiver per core.

1.1 OVERVIEW

This thesis presents the application of wireless on-chip communication in manycore architec-
tures. These architectures take advantage of the natural broadcast capabilities of wireless com-
munication in different ways. The first work, Replica, proposes a manycore architecture that uses
wireless communication for synchronization and communication-intensive ordinary data. To de-
liver high performance, Replica supports an adaptive wireless protocol and selective message drop-
ping. The adaptive wireless protocol introduced and used in Replica is then extended and studied in
much more detail in the second work, Fuzzy-Token. Besides describing the protocol in detail, this
second work focuses on motivating the need for such an adaptive protocol in WNoC scenarios. It
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also explains the different parameters available for tuning, and finally shows an analysis of different
values and combinations of values for the parameters previously described, for different types of
synthetic traffic and real application traces. In order to improve the programmability of the design
proposed in the first work, the third work uses wireless communication to augment a conventional
directory-based invalidation cache coherence protocol. The resulting protocol, called WiDir, seam-
lessly transitions between wired and wireless coherence transactions for the same data based on
the access patterns, in a programmer-transparent manner. Lastly, the fourth contribution focuses in
the novel chiplet paradigm, and its scalability concerns beyond a handful of chiplets. In this fourth
contribution, we present WiPackage. WiPackage is comprised of a set of chiplets, each operating
as a separate shared-memory domain with its own separate wired on-chip network. WiPackage

provides a message-passing wireless-augmented interconnection network, aimed at sending data
across chiplets.

1.2 SUMMARY OF CONTRIBUTIONS

The design of a wireless manycore inherently involves trade offs between several elements such
as programmability, performance, and area and power overhead. We present below a brief sum-
mary of the challenges that each of our works faced, and the novel techniques we proposed to
overcome them.

1.2.1 Replica: A Wireless Manycore for Communication-Intensive and Approximate Data

Data access patterns that involve fine-grained sharing, multicasts, or reductions have proved to
be hard to scale in shared-memory platforms. Recently, wireless on-chip communication has been
proposed as a solution to this problem, but a previous architecture has used it only to speed-up
synchronization [45]. An intriguing question is whether wireless communication can be widely
effective for ordinary shared data.

This work presents Replica, a manycore that uses wireless communication for communication-
intensive ordinary data. To deliver high performance, Replica supports an adaptive wireless pro-
tocol and selective message dropping. On the software side, the published paper that came out
of this work [46] describes the computational patterns that leverage wireless communication, pro-
gramming techniques to restructure applications, and tools that help with automation. However,
my contributions in this project focused instead on the hardware aspect of the work, such as the
design and implementation of the adaptive wireless protocol, the hardware support for the selective
packet dropping, and the area and energy analysis of the proposed architecture. As such, in my
thesis I only describe the aforementioned hardware aspects of this work.
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Our results show that wireless communication is effective for ordinary data. For 64 cores,
Replica obtains a mean speed-up of 1.76x over a conventional machine. The mean speed-up
reaches 1.89x if approximate-computing transformations are enabled. The average energy con-
sumption is substantially reduced by 34% (or 38% with approximate transformations), and the
area increases only modestly.

1.2.2 Fuzzy-Token: An Adaptive MAC Protocol for Wireless-Enabled Many-Core CMPs

One of the main challenges of the Wireless Network-on-Chip paradigm resides in the design of
methods that provide fast and efficient access to the wireless channel while adapting to the con-
stant traffic changes within and across applications. Existing approaches are either cumbersome
or do not provide the required adaptivity. In this work we propose Fuzzy-Token, a simple protocol
that leverages the unique properties of the on-chip scenario to deliver efficient and low-latency ac-
cess irrespective of the application characteristics. We substantiate our claim via simulations with
a synthetic traffic suite and real application traces. Fuzzy-Token consistently provides a latency
among the lowest of the evaluated protocols. On average, the latency provided by Fuzzy-Token is
28.5× lower than previously proposed WNoC MAC protocols, such as BRS (4.4× in geometric
mean), and 4.1× lower than Token (2.6× in geometric mean), as evaluated and discussed in depth
in this work.

1.2.3 WiDir: A Wireless-Enabled Directory Cache Coherence Protocol

As the core count in shared-memory manycores keeps increasing, it is becoming increasingly
harder to design cache-coherence protocols that deliver high performance without an inordinate
increase in complexity and cost. In particular, sharing patterns where a group of cores frequently
reads and writes a shared variable are hard to support efficiently. Hence, programmers end up
tuning their applications to avoid these patterns, hurting the programmability of shared memory.

To address this problem, this work uses the recently-proposed on-chip wireless network tech-
nology to augment a conventional invalidation-based directory cache coherence protocol. We call
the resulting protocol WiDir. WiDir seamlessly transitions between wired and wireless coherence
transactions for a given line based on the access patterns in a programmer-transparent manner. In
this work, we describe the protocol transitions in detail. Further, an evaluation using SPLASH and
PARSEC applications shows that WiDir substantially reduces the memory stall time of applica-
tions. As a result, for 64-core runs, WiDir reduces the execution time of applications by an average
of 22% compared to a conventional directory protocol. Moreover, WiDir is more scalable. These
benefits are obtained with a very modest power cost.
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1.2.4 WiPackage: Wireless-Enabled Collective Communication in a Many-Chiplet Package

As the semiconductor industry moves to smaller process nodes, the cost of producing large dies
continues to increase. In response, industry has started shifting towards disintegrated designs in
which a single chip is broken down into multiple smaller chiplets. However, a main challenge still
resides in the design of interconnection networks that provide fast and efficient chiplet-to-chiplet
communication. While current low chiplet counts have allowed manufacturers to opt for simple
fully-connected and adapted star topologies, more scalable solutions are required for the long term.

In this work, we propose and evaluate a hybrid wired-wireless hierarchical memory and net-
work chiplet-based architecture, called WiPackage. WiPackage is comprised of a set of chiplets,
each operating as a separate shared-memory domain with its own separate wired on-chip network.
WiPackage provides a message-passing wireless-augmented interconnection network, aimed at
sending data across chiplets. When compared to a purely wired-based chiplet architecture, we
show that WiPackage is able to speed up common message-passing collective primitives by up to
9x, and common message-passing benchmarks by 2.05x, while adding a modest area and power
cost.

In the following sections, we present each of the aforementioned works in detail along with their
evaluation results.
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CHAPTER 2: REPLICA: A WIRELESS MANYCORE FOR
COMMUNICATION-INTENSIVE AND APPROXIMATE DATA

2.1 INTRODUCTION

Data access patterns where multiple threads interleave reads and writes to the same set of vari-
ables in a fine-grained manner and without much per-thread locality do not scale well in shared-
memory multiprocessors. They create many network messages, inducing communication bot-
tlenecks. To alleviate this problem, commercial vendors (e.g., [52, 53, 54, 55]) and researchers
(e.g., [18, 56, 57, 58, 59, 60, 61, 62]) have proposed various hardware techniques. They include
new synchronization and cache coherence protocol improvements, special networks, and new com-
munication technologies such as optics and transmission lines.

Recently, on-chip wireless communication has emerged as a promising alternative that supports
fine-grained data sharing with low-latency, and is broadcast-friendly [21, 51, 63, 64]. In this en-
vironment, broadcasting a short message of 80 bits takes about 4 ns, which is about two orders of
magnitude lower than in conventional on-chip networks. For example, the recent WiSync many-
core [51] augments each core with a small antenna and a transceiver. It supports low-latency
implementations of synchronization primitives, such as locks and barriers. WiSync stores the state
of synchronization variables in a small, per-core Broadcast Memory (BMem) that has identical
contents in all of the cores. Writes to the BMem are broadcasted, updating all the BMems at the
same time, while reads are satisfied from the local BMem.

While WiSync shows the attractiveness of on-chip wireless communication, it is only tailored to
speed-up synchronization operations. An intriguing question is whether the wireless communica-
tion and BMem support can be used to speed-up transfers of ordinary data.

Using wireless communication for ordinary data faces two fundamental challenges: the bounded
size of BMem and the limited bandwidth of the wireless communication channel. WiSync does not
completely experience these challenges, as the synchronization variables typically fit in the 16KB
BMem and do not consume much of the wireless channel bandwidth. In contrast, ordinary data
does not fit in BMem, and its frequent updates may cause contention in the wireless channel. It is
therefore necessary to judiciously select the subset of the data that will benefit the most from the
wireless communication, and place it in BMem.

In this work, we present Replica, a manycore architecture and software interface that enables ef-
ficient use of wireless communication for ordinary data. We tailor Replica to speed-up communication-

intensive shared data – whose accesses typically induce substantial overheads in standard cache hi-
erarchies. Our analysis presents several common communication-intensive patterns. They include
broadcasts, regular many-to-many interactions, irregular many-to-many interactions, and reduc-
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tions. To handle these patterns, the main author of [46] presented: (i) a software API that exposes
BMem to the software developer, and (ii) transformations and tools for selecting communication-
intensive data and restructuring applications for improved BMem and wireless channel use. A
software developer can use two operations, approximate locks and approximate stores, to opti-
mize applications that can tolerate noise. Further, she can combine these operations with existing
approximation techniques that trade accuracy for reduced communication and/or data size.

However, as mentioned in Section 1.2.2, in my thesis I do not claim the aforementioned proposed
software techniques. Instead, I claim, describe, and focus on the hardware aspects of the Replica

architecture. As such, in this work we propose two hardware-based techniques to reduce contention
and latency in the wireless channel. First, we introduce an adaptive wireless protocol. The protocol
dynamically identifies whether the data transmissions in the execution are sparse or bursty, and
applies a random-access or a token-passing protocol, respectively.

Second, Replica provides hardware support for selectively dropping packets if they carry certain
types of data and if the sender encounters a certain level of channel contention. Together, these
techniques have a greater impact on Replica than on standard architectures, due to the limited
BMem size and the limited wireless channel bandwidth.

Our results show that Replica effectively uses wireless communication for ordinary data. We
evaluated Replica with 10 applications from graph analytics, vision, and numerical simulation.
For 64-core executions, Replica speeds-up the applications over a conventional machine by a ge-
ometric mean of 1.76x for exact computation and 1.89x for approximate computation. Further,
Replica substantially reduces the average energy consumption by 34% (or 38% with approximate
computation). Finally, the area increase is small, and the developer effort is modest.

2.2 BACKGROUND

Figure 2.1 shows the WiSync architecture [51]. WiSync augments every core of a manycore
with a Broadcast Memory (BMem), a wireless transceiver, and two antennas (of which we will
only consider one). The transceiver has two main modules, namely the physical layer (PHY)
and the Medium Access Control (MAC). The PHY module serializes and modulates the data to
transmit, detects collisions, and demodulates and deserializes data at reception. The MAC module
manages the access to the channel by scheduling transmissions and handling collisions [65].

The BMem is a direct-mapped memory of a size similar to an L1 cache. The BMems of all
the cores contain the exact same variables that are kept coherent through wireless updates. A core
accesses its BMem with plain loads and stores. Based on the physical address of the location
accessed, a load or store request is sent either to the L1-L2 hierarchy or to the BMem.
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Figure 2.1: WiSync manycore.

When a core writes to a BMem location, it generates a message to be broadcasted through the
wireless network. All BMems (including the local one) are updated simultaneously. This design
ensures a total order of writes to BMems across all cores. It also ensures that, at all times, all cores
have the same values in their BMems. Loads that access the BMem simply read the local copy of
the data.

WiSync uses 5 cycles to transmit a 77-bit packet, which corresponds to a 64-bit write. In the
second cycle, the transceiver listens if there was a collision with another packet in the first cycle.
If there was no collision, in the next three cycles it sends the rest of the packet with guaranteed no
collision. Otherwise, the transfer is aborted, and the senders will retry sending their packets after a
randomized, exponentially-increasing number of cycles. This carrier-sensing protocol with expo-
nential backoff adapted to the on-chip scenario is called Broadcast Reliability Sensing (BRS) [66].

WiSync supports read-modify-write instructions that form the basis of synchronization primi-
tives. These instructions leverage a special hardware bit called the Atomicity Failure Bit (AFB).
The AFB is set in hardware if, in between the read and write of the local core in a read-modify-
write operation to a BMem address, an external core succeeds in performing a write to the same
location. In this case, the write of the local core does not occur, and the atomic operation fails.

2.3 REPLICA OVERVIEW

Replica extends the WiSync architecture in several ways, including the ability to store ordinary
(i.e., non-synchronization) and synchronization data in the BMem. In this section, we outline the
key features of Replica.

Broadcast Memory. Replica provides an API to allocate data in BMem (which I do not claim in

my thesis). To store an array a in BMem, the developer only needs to change the allocation site to
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f l o a t * a = w i r e l e s s m a l l o c ( n* s i z e o f ( f l o a t ) ) ;

All accesses to the array elements are automatically directed to the BMem, and writes use the
wireless channel. Programs do not require any additional developer or compiler interventions, as
the BMem is memory mapped. A call to wireless free deallocates the memory.

Since the amount of communication-intensive data may exceed the size of the BMem, it is essen-
tial to restructure communication-intensive data structures to fit as much as possible in BMem. We
present transformations that allow the flexible storage of a fraction of communication-intensive
data in BMem. Our approach rests on two observations: (i) in many applications, the size of
communication-intensive data increases at a much slower rate than the full input data size, and
(ii) since BMem is memory-mapped, we can transform the data structure layout with little perfor-
mance penalty.

Adaptive Wireless Protocol. In Replica, the wireless network utilization varies across applica-
tions and even within an application. For applications with sparse transmissions, the carrier-sensing
protocol from WiSync is sufficient. However, applications with high or bursty load perform better
with a token-passing protocol, in which only the node that owns the token can transmit. Replica’s
MAC module supports both protocols, and switches between the two to adapt to the characteristics
of the application. This process is automatic and does not require input from the developer.

Approximate Broadcast Memory. To further reduce the wireless channel contention, Replica

uses a section of BMem for approximate data. In this section, the messages for data updates and
locking operations may occasionally be dropped, if the latency to perform the access exceeds a
certain threshold. Approximate data is allocated as

f l o a t * a = a p p r o x w i r e l e s s m a l l o c ( n* s i z e o f ( f l o a t ) ) ;

and is stored in a specially-designated section of the BMem. Approximate BMem supports two
operations that selectively drop packets (which I do not claim in my thesis):

• Approximate Store: It assigns a value val to a variable var if the write succeeds within
a specified latency threshold. Approximate stores can be unchecked or checked. In the
former, if the message is dropped, the computation silently continues without informing the
software. In the latter, software can use the call approx stac(var, val) (for store
approximate checked) to find out if the write succeeded. Unchecked stores use the same
opcode as standard stores. Checked stores use a different opcode.

• Approximate Lock: approx lock(m) attempts to obtain the lock m within a specified
latency threshold. If it succeeds, it returns a success code. If it does not succeed, either
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because it spins for too long on an already taken lock, or because it takes too long to obtain
the wireless network to send the lock acquire update, it returns a failure code. In this case,
the software skips the critical section and the unlock operation.

Tool Support. Replica includes a tool infrastructure (which I do not claim in my thesis) – a pro-
filer, compiler passes for transformations, and an autotuner – to help the developer restructure the
application. Our experience shows that these tools can automate many tasks and enable seamless
adaptation of program code to versions of Replica with different hardware characteristics.

2.4 REPLICA ARCHITECTURE

This section describes the two main architectural features of Replica that improve over WiSync:
the adaptive wireless protocol and the approximate BMem.

2.4.1 Adaptive Wireless Protocol

In WiSync, the wireless network is utilized relatively little, and its traffic patterns are simple.
Therefore, a wireless MAC protocol like BRS is appropriate. In BRS, when a packet collides, the
sender does not try to resend it at the next available opportunity. Instead, it waits for a backoff
period before retrying. Specifically, it considers a period of 2c − 1 cycles (where c is the number
of collisions that the packet has suffered so far), picks a random number within that period, and
waits for that number of cycles. The result is a backoff that increases exponentially.

In Replica, the use of the wireless network is more complex, and its utilization patterns vary
across applications and within an application. Hence, while Replica retains the BRS protocol for
applications or sections of applications with sparse transmissions, it also supports a Token Ring

protocol in applications with frequent or bursty transmissions [67].
In the Token Ring protocol, there is a logical token that is owned by different nodes at different

times. At any time, only the node that owns the token can transmit. At the end of a packet
transmission, or if the owner node remains silent for one cycle, the token is passed to the next node
following a logical ring.

Replica introduces an adaptive wireless protocol that intelligently switches between the two
protocols, adapting to the characteristics of the execution. Specifically, one of the nodes (which
we call the master node) has a hardware mechanism in its transceiver that monitors the use patterns
of the wireless channel and chooses the protocol to use. The mechanism’s hardware consists of
two counters and simple logic to perform a division and a comparison:
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• When running in BRS mode, the counters are called Coll and NoColl. Every time any core
sends a packet, the mechanism checks for a collision. If there is no collision, it increments
NoColl; otherwise, it increments Coll.

• When running in Token Ring mode, the counters are called Idle and Busy. If the mechanism
observes an idle cycle, a core missed its opportunity to transmit, and the Idle counter is
incremented. Otherwise, a packet is transmitted, and the Busy counter is incremented.

Figure 2.2: Adaptive wireless protocol.

Figure 2.2 presents the operation of the mechanism. The mechanism starts in BRS mode. Fol-
lowing an update to either counter, the hardware calculates the ratio Coll/NoColl. If this ratio is
equal or higher than the TBRS threshold, the transceiver in the master node clears the counters and
informs all the nodes to switch to the Token Ring mode.

From then on, the nodes use the Token Ring protocol, and the mechanism in the master node’s
transceiver computes the ratio Idle/Busy. When the ratio is equal or higher than the Ttoken threshold,
it means that only a few cores have data to transmit and are unnecessarily waiting to get the token.
In this case, the transceiver clears its counters and notifies all the nodes to switch to the BRS mode.

2.4.2 Approximate Broadcast Memory

The programmer can tag a certain range of BMem addresses as containing approximable vari-
ables. For variables allocated in this range, Replica can drop wireless packets through approximate
stores and locks. This support reduces the pressure when the wireless channel is highly contended.

Approximate Stores. Stores to approximable variables use the wireless channel like any other
BMem variable, but the stores can be dropped if the contention for the wireless channel is high. In
this case, neither the remote BMems nor the local BMem are updated.

The MAC module keeps track of the waiting delay of droppable write packets. If the waiting
delay exceeds threshold Tdrop, the packet is dropped and the store is canceled. This automatically
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and dynamically reduces the contention and power in communication-intensive periods. This way,
programmers can perform certain approximations only if it is strictly necessary, to avoid saturating
the network.

Figure 2.3: Packet tracking.

Figure 2.3 presents the hardware support. It consists of the Packet Tracking Table (PTT) in the
MAC module. When a packet is sent to the BMem, it is deposited in a buffer in the transceiver. At
this point, if the packet is for a droppable store, it allocates an entry in the PTT. Each PTT entry
has three fields. The first one is a pointer to the position of the packet in the buffer. The second
one contains the total time that the packet is expected to wait before being sent. We call it the
Accumulated Packet Latency (APL) for the packet. When the APL for a packet reaches Tdrop, the
packet is dropped. The third field is only used by checked approximate stores, and contains the ID
of the register that will receive the transmission outcome.

The algorithm to set the APL is protocol dependent. When running in BRS mode, the APL for
a packet is set as follows. When the packet arrives at the queue, it sets its APL to the minimum
number of cycles that it will have to wait to be sent. This time is equal to the number of cycles
remaining in the backoff period of the first packet in the queue, plus the number of packets in the
queue times the duration of a packet send (i.e., 5 cycles including the cycle listening for collisions).
Note that this computation includes both droppable and non-droppable packets. Further, when a
packet is sent and collides with another packet, the hardware calculates the backoff time, and this
backoff time is added to the APL of all the droppable packets in the queue (including the packet
that collided). Finally, when a packet is dropped, the hardware computes the number of waiting
cycles to remove. This number is 5 cycles plus the remaining cycles in the backoff period (if this
was the first packet in the queue). This number is subtracted from the APL of all the droppable
packets that are queued after the dropped one.

When running in Token Ring mode, the APL for a packet is set as follows. When the packet
arrives at the queue, it sets its APL to the number of cycles that it will have to wait assuming an
idle wireless channel. This number includes: (i) for the first packet in the queue, the number of
cycles remaining until it can start the sending plus the cycles to send the packet, plus (ii) for each
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of the other packets in the queue, the number of nodes in the machine plus 3 (since a packet takes
4 cycles to be sent now). Further, every time that another node transmits, the hardware adds 3
cycles to the APL of all the entries in the table. Finally, when a packet is dropped, the number of
waiting cycles to remove from all the subsequent droppable packets is: (i) if the dropped packet
was the first one in the queue, the number of cycles remaining until it could start the sending plus
the cycles to send the packet, or (ii) if the packet was not the first one in the queue, the number of
nodes in the machine plus 3.

When a packet is dropped, it is removed from the buffer. Further, its PTT entry is removed and,
for checked approximate stores, the register indicated in the PTT entry is set. When a droppable
packet is sent successfully, the same actions occur, except that the register indicated in the PTT
entry is cleared.

Checked Approximate Stores. In unchecked approximate stores, an update may be silently
dropped. In the checked version, the programmer obtains the outcome of the store. The program-
mer uses a special store approximate instruction (which I do not claim in my thesis), sta R1,

R2, var addr, which takes three arguments: a register R1 containing the value to store, a reg-
ister R2 that indicates if the store was either successfully committed (R2=0) or dropped (R2=1),
and the address var addr to receive the data. R2 is the register recorded in the corresponding
entry of the PTT. We expose the API call approx stac(var, val), which is implemented
as sta R1, R2, var addr; ret R2. It takes the variable to update (var) and the update
(val), and returns whether the write succeeded (zero) or not (one).

Approximate Locks. To support approximate locks, Replica introduces a new hardware bit in
the BMem controller called the Write Drop Bit (WDB). The hardware sets the WDB bit when a
write packet belonging to a read-modify-write instruction is dropped. The WDB bit remains set
until the software reads it, at which point the bit automatically clears. In this way, the programmer
is aware of whether an approximate lock has been dropped. Since there is only one read-modify-
write instruction executing at a time per core, a single WDB bit is enough.

Figure 2.4 shows the lock acquire routine for an approximate lock (which I do not claim in

my thesis). The code tries to acquire lock m in address m addr using an exchange instruction.
An approximate lock fails and returns -1 when either (i) the software has unsuccessfully tried to
acquire the lock for more than MAX attempts, or (ii) the write packet of the latest read-modify-
write instruction that attempted to acquire the lock is queued for Tdrop cycles. Condition (i) is
implemented in software, using variable Num spins (Line 6). When condition (ii) occurs, the
write packet is dropped, the WDB bit gets set, and the exchange instruction terminates without
performing the write. In this case, the exchange register R may have read the new value, but the
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1 Num spins = 0
2 R = TAKEN
3 Try : exchange R , m addr
4 i f (WDB) r e t u r n −1 / / p a c k e t d ropped
5 i f (R == TAKEN){ / / f a i l u r e
6 i f ( Num spins++ > MAX)
7 r e t u r n −1 / / t o o many f a i l u r e s
8 jmp Try
9 }

10 e l s e { / / R i s UNTAKEN
11 i f (AFB){ / / a t o m i c i t y f a i l u r e
12 / / no w r i t e o c c u r r e d
13 R = TAKEN
14 jmp Try
15 }
16 e l s e r e t u r n 0 / / s u c c e s s
17 }

Figure 2.4: Approximate lock acquire.

write to m address has not occurred. Hence, the first action that the software takes after the
exchange is to check WDB (Line 4). Irrespective of the current value of R, if WDB is set, the
function returns -1.

The software then checks R. If R’s value is still TAKEN and the number of tries is no higher than
MAX, the software retries the exchange (Line 8). If R’s value is UNTAKEN, we still need to do
a final check. WiSync [51] requires the software to check the Atomicity Failure Bit (AFB) (Line
11). If the AFB is set, it means that another node updated m address between the local read and
the local write, and that the local write failed. In this case, the software resets R to TAKEN and
retries the exchange (Line 14).

When the software finds out that an approximate lock operation has failed, it skips the critical
section and the subsequent unlock operation. The author of Replica’s proposed software techniques
described the software transformation in the paper [46].

We have also designed a similar algorithm for compare and swap (CAS) synchronization.

2.4.3 Other Features

Two additional Replica enhancements over WiSync’s wireless hardware are related to the capac-
ity of BMem. First, since the BMem is bigger in Replica than in WiSync, it needs more address
bits and is slower. Second, since different applications need different BMem sizes, Replica orga-
nizes the BMem in chunks. The chunks that are not allocated by the application are power-gated
to save energy.
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Table 2.1: Summary of the applications.

Name Description Input
Water [68] Simulation of water molecules (nsquared) 1000 molecules for 10 steps
BFS [69] Breadth-first search p2p-gnutella31 (from [70])
SSSP [69] Single source shortest path p2p-gnutella31 (from [70])
Pagerank [69] Compute pagerank for nodes in a graph p2p-gnutella31 (from [70])
CC [69] Compute connected components of a graph p2p-gnutella31 (from [70])
Bodytrack [71] Track a body pose through images 4 frames, 1000 models
Streamcluster [71] Cluster streams of points 4096 pts, 20 centers
Volrend [68] Render a 3D object head
Community [69] Compute modularity of a graph p2p-gnutella31 (from [70])
Canneal [71] Find optimal routing for gates on a chip 10000 elements

2.5 METHODOLOGY

To evaluate Replica, we perform cycle-level architectural simulations using Multi2sim [72]. We
run a variety of applications from SPLASH-2 [68], PARSEC [71], and the CRONO [69] graph
suite.

2.5.1 Applications

Table 2.1 lists the 10 applications, what they do, and the inputs we use in the evaluation.

Data Sharing Patterns. The benchmark applications have different data-sharing patterns. Water
has broadcast communication. The graph applications (BFS, Pagerank, SSSP, CC, and Commu-
nity) have irregular, mostly many-to-many communication. Volrend mainly contains communica-
tion between neighbors, but also has broadcast communication. Canneal has an irregular commu-
nication pattern, due to locks. Bodytrack and Streamcluster have one-to-many communications
and reductions.

Inputs and Metrics. For the SPLASH-2 and PARSEC applications (except Streamcluster), we
use the same input sets as WiSync. For the graph applications, we use input sets from SNAP [70].
The input set sizes were chosen to allow detailed simulation runs that ranged between 4 and 48
hours per run.

Other Programs. We also analyzed other applications from the SPLASH-2 and PARSEC suites.
As noted in previous characterizations [73], most of the remaining programs are data-parallel
(e.g., blackscholes and swaptions) or implement regular algorithms with limited sharing, typically
among neighbors (e.g., fluidanimate and raytrace). Since we do not expect Replica to improve
performance for such computational patterns, we do not evaluate such applications.
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2.5.2 Architecture Configurations

We analyze three configurations of Replica:

• Wireless-Locks (WL): it allocates only synchronization variables in BMem. It extends
WiSync with the adaptive wireless protocol, and a BMem size that holds all the synchro-
nization variables: 23KB in Water, 39KB in Canneal, and less than 1KB in the rest of the
applications.

• Wireless-Optimized (WO): it extends WL by allocating some ordinary data in the BMem
and applying the Data Splitting and Lock Coarsening transformations proposed by the main
author of Replica in [46]. These transformations preserve the program semantics.

• Wireless-Approximate (WA): it extends WO by applying the approximation and non-approximation
transformations, and checked and unchecked approximate stores proposed by the main au-
thor of Replica in [46].

We compare these configurations to a conventional architecture without BMem or wireless net-
work in three configurations: Baseline (B) runs the original application, Optimized (O) augments
B with the transformations in WO, and Approximate (A) augments O with the transformations in
WA except those that need hardware support (e.g., approximate stores).

2.5.3 Energy Models

We model the energy consumed by the cores and the memory hierarchy with McPAT [74] and
CACTI [75], and the energy of the wired links and routers with DSENT [76]. For the wireless
hardware, we compute the power and area consumed per core using data in the literature for 65nm.
Specifically, for the transceiver, we use a micrograph and data from [31, 77, 78] to estimate an
area of 0.25mm2 (including passives) and a power of 30mW. For the data converter, based on [79],
we estimate an area of 0.03mm2 and a power of 0.72mW. For the serializer and deserializer, data
from [80] indicates an area of 0.04mm2 and a power of 10.8mW. Finally, for the antenna, [81]
shows a simple dipole that consumes an area of 0.04mm2. We double the area to 0.08mm2 to make
it more realistic. Therefore, the overall RF circuit with passives consumes 0.4mm2 and 41.5mW.

However, following [31, 82], we can power gate the transmitter’s power amplifier and the re-
ceiver’s low noise amplifier when not in use. This saves 10mW for the transmitter and 10mW of
the receiver. The remaining components (serializers, data converters, oscillators, mixers, and de-
tectors) are always on. Moreover, since our data comes from 16Gb/s systems and we use a system
with 20Gb/s, we need to scale up the power consumption linearly. This gives us the following total
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Table 2.2: Architecture modeled. RT means round trip.

General Parameters
Architecture Manycore with 32–64 cores at 22nm technology
Core Out of order, 2-issue wide, 1GHz, x86 ISA
ROB; ld/st queue 64 entries; 20 entries
L1 I+D caches Private 32KB WB, 2-way, 2-cycle RT, 64B lines
L2 cache Shared with per-core 512KB WB banks
L2 bank 8-way, 6-cycle RT (local), 64B lines
Cache coherence MOESI directory based
On-chip network 2D-mesh, 4 (default), 2 or 1 cycles/hop, 128-bit links
Off-chip memory Connected to 4 mem controllers, 110-cycle RT

Replica Parameters
Per-core BMem Up to 512KB, in 32KB chunks

6-cycle RT, 64-bit wide line
Wireless channel 20Gb/s; 1 cycle for collision detection
MAC Protocols BRS (exponential backoff), token passing in ring
MAC Thresholds TBRS = 0.4, Ttoken = 15
Tdrop 40–2500 cycles
Transceiv+Anten Area: 0.4mm2; TX/RX/idle: 39.4/39.4/26.9mW
Power gating Analog amplif. (transient: 1.14 pJ), unused BMem

values for the per-core RF circuitry at 65nm: 39.4mW when the transmitter is idle, 39.4mW when
the receiver is idle, 26.9 mW when both are idle, and a total area of 0.4mm2.

The next step would be to scale these numbers to the 22nm technology assumed for the core.
Several authors [83, 84] argue that the area reduces linearly with the feature size. However, we
conservatively use no scaling, and keep the area at 0.4mm2 and the power at 39.4mW with gating.
Note that these numbers are much higher than those used in WiSync, which are 0.14mm2 for the
area and 18mW for the power. Finally, using the amplifier consumption of [31], and the power-
gating overheads of [82], we estimate a transient energy of 1.14pJ.

2.5.4 Simulator Implementation

We use cycle-level execution-driven simulations using the Multi2sim [72] simulator. We model a
manycore with 32–64 cores at 22nm technology running at 1GHz. Table 2.2 shows the parameters
of the architecture. Each tile has a 2-issue out-of-order core, 32KB of private L1 instruction and
data caches, and a 512KB bank of shared L2. The NoC is a 2D mesh. The per-core BMem is as
large as an L2 bank, but we power-gate unused 32KB chunks as directed by the application. We
will present the used fraction of BMem in the next section. The wireless network has a data rate
of 20 Gb/s, enough to transmit a BMem line and its address (about 80 bits) in 4 cycles (plus one
cycle for collision detection). We do not consider missing packets due to noise, since the error rate
is below 10−16. We augment Multi2sim with an on-chip wireless network that accurately models
transmissions, collision handling, transceiver power-gating, and packet dropping.
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Water BFS SSSP Pagerank CC Bdytrack Strmcltr Volrend Cmnty Canneal Geomean

Figure 2.5: Energy consumed by the different configurations relative to Baseline (B) for 64 cores.

2.6 EVALUATION

As mentioned in Section 1.2.2, in my thesis I only claim the hardware aspects of Replica, there-
fore although the evaluation in the paper [46] also examines the performance of Replica, the impact
of approximations on accuracy, the relationship between tuning parameters and the accuracy, and
how applications are adapted for Replica, in this thesis I only show the effect of the adaptive wire-
less protocol (Section 2.6.1), and the energy consumption and area of Replica (Section 2.6.2).

2.6.1 Adaptive Wireless Protocol

In our experiments, we run the adaptive mechanism of Figure 2.2 for an initial section of the
execution of the application, until the hardware can identify which of the two protocols is best for
the application. Specifically, the execution of an application is logically divided into intervals of
10,000 cycles. At the beginning of each interval, the two counters discussed in Section 2.4.1 start
at zero. Then, as execution proceeds, they get updated. At the end of the interval, based on their
relative values and the values of the TBRS and Ttoken thresholds (Table 2.2), the hardware decides
what protocol to try in the next interval, and clears the counters. The process then starts again.
After about 350 intervals on average, the hardware makes the decision to stick with the protocol
that has been chosen in most of the intervals so far.

Of our applications running under WO, seven end-up sticking with the token ring protocol (BFS,
SSSP, Pagerank, CC, Streamcluster, Volrend, and Community), and three with the BRS protocol
(Water, Bodytrack, and Canneal). In most applications, the percentage of intervals when the domi-
nant protocol was chosen is greater than 75%. The percentages are lower in BFS (60%), Pagerank
(51%), and Volrend (51%).

To assess the performance impact of our adaptive wireless protocol, we measure how the exe-
cution time of WO would change if either all applications were using BRS or all were using token
ring. Specifically, if the applications that prefer token used BRS, their individual execution times
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would be higher by 28.1% (Community), by 27.1% (CC), by 21.7% (Pagerank), and by less than
2.2% (BFS, SSSP, Streamcluster, and Volrend). Conversely, if the applications that prefer BRS
used token, their individual execution times would be higher by 8.6% (Bodytrack) and by less than
2.0% (Water and Canneal). With these results, we can conclude that, if all the applications used
BRS, the average execution time under WO would increase by 8.4%; if all the applications used
token ring, the average execution time would increase by 1.2%.

2.6.2 Analysis of Energy and Area

Energy Impact. Figure 2.5 shows the energy consumed by the different configurations relative
to B for 64 cores. The energy is broken down into dynamic (Dyn) and leakage (Leak) energy for
the core (including L1), L2, NoC, and BMem. We also show the contribution of the transceiver.

The results show that about half of the energy is dynamic energy in the core, and the rest is
leakage energy in all the components. Across the bars, we see that the energy savings of each
configuration over the Baseline (B) are broadly proportional to the performance improvements of
the configuration over B. The wireless configurations reduce the cost of the polling operations and
long distance communications. Therefore, they reduce the energy consumption. This effect is
especially visible in Streamcluster.

The energy cost of the wireless communication itself can be estimated by adding the contribu-
tions of the BMem and the transceiver. We see that such contribution is modest. On average, it is
8.9% of the energy in WO and 8.6% of the energy in WA. The results for 32 cores show a similar
behavior and are omitted to save space.

Summary of energy savings. Overall, the average energy savings of the exact version of Replica
(WO) over the optimized baseline (O) are 34%. The average energy savings of the approximate
Replica (WA) over the approximate baseline (A) are 38%.

Area Impact. Based on the numbers from Section 2.5.3 and Table 2.2, our tools estimate that
the area overhead of supporting wireless communication is around 15.5% of the Replica architec-
ture. This includes the contribution of the BMems (11.52%) and of the transceivers and antennas
(3.97%). Note that these results are conservative, as we do not scale the area of the RF components
from 65nm to 22nm (Section 2.5.3).

2.7 RELATED WORK

Wireless Architectures. We described WiSync [51] in Section 2.2. Duraisamy et al. [63] ac-
celerate graph analytics using an NoC augmented with wireless links to better support irregular
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communication patterns. In their case, the application is oblivious of the underlying architecture,
and the routing mechanism of each node decides whether to use the wireless links or the regular
wire lines, based on the destination address. Their work is also different from ours in that the
wireless links are only used to unicast packets between distant cores, irrespective of their critical-
ity, and just as a way to shorten the propagation time of the packets through the network. Later,
Duraisamy et al. [64] propose to accelerate graph analytics by bypassing certain updates. Their
approximation is exclusively software-based and reduces both the computation and the volume of
data lookups, specific to a particular community detection graph algorithm. In contrast, Replica
presents hardware-supported, general approximate store and approximate lock mechanisms, which
we applied across multiple application domains.

Nanophotonics and Transmission Lines. Transmission of optical signals through nanophotonic
waveguides [18, 59, 60, 85, 86] and transmission of radiofrequency signals through transmission
lines (TLs) [87, 88, 89, 90, 91, 92] can provide broadcast. Compared to wireless networks, both
nanophotonics and TLs are more energy efficient and provide higher bandwidth, because energy is
guided rather than radiated. However, network design using either nanophotonics or TLs becomes
more complex and less scalable than wireless. It is more complex because it requires a physical
infrastructure that interconnects the nodes. Nanophotonics are less scalable due to laser power
needs. Light is modulated by the transmitter and then guided to all the receivers. Each receiver
extracts a fraction of the light, causing losses, and requiring high laser power for large destinations
sets. TLs are less scalable due to: (1) the need to overcome signal reflections with amplifying
stages between segments, which are costly and complicate the design, (2) the requirement of a
centralized arbiter for the bus, (3) the fact that the analog logic in TLs cannot handle broadcast
operations well, especially if the fan-out is large.

Scratchpads. While both BMem and scratchpads [93] have a finite size, BMems are automati-
cally coherent. They do not rely on the compiler to keep them coherent, which is a major reason
for the difficulty of using scratchpads. In Replica, the programmer and/or compiler just allocates
the data in BMem and Replica transparently handles coherence in hardware.

Lossy NoCs. Prior work has proposed to apply lossy compression techniques to messages before
sending them to the network [94]. The approximation occurs in the (wired) network interface, but
could be potentially applied to wireless too. Although bufferless networks [6, 95] drop or deflect
packets to undesired paths when there is contention at the switches, they are not approximate, since
delivery is ensured through retransmissions.
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Approximate Parallelization. Relaxed synchronization optimizations intentionally give up some
synchronization for faster execution (e.g., [96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107]).
The previous works mainly show the potential of many computations to successfully continue
execution with relaxed synchronization and random errors on commodity hardware. Our work
presents an approximate BMem architectural abstraction that is specialized for packet dropping.
We show the efficiency of our hardware and software co-design and develop a toolchain to auto-
mate program adaptation.

2.8 CONCLUSION

This work presented Replica, a manycore that uses wireless communication for communication-
intensive ordinary data. Replica supports two hardware mechanisms to reduce contention and
latency in the wireless channel: an adaptive wireless protocol and the ability to selectively drop
wireless packets if the sender encounters a certain level of contention.

Our results showed that Replica effectively uses wireless communication for ordinary data. For
64-core executions, Replica sped-up applications over a conventional machine by a geometric
mean of 1.76x for exact computation and 1.89x for approximate computation (as shown in the
Replica paper [46]). Further, Replica substantially reduced the average energy consumption by
34% (or 38% with approximate computation). Finally, the area increase is small, and the developer
effort modest.
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CHAPTER 3: FUZZY-TOKEN: AN ADAPTIVE MAC PROTOCOL FOR
WIRELESS-ENABLED MANYCORE CMPS

3.1 INTRODUCTION

In recent years, processor manufacturers have steadily increased the number of cores integrated
on a processor chip. Currently, Ampere’s Altra processor [108] integrates up to 80 ARM cores,
AMD’s EPYC 7742 processor [109] supports up to 64 cores, and Intel’s Xeon Platinum 9282
processor [110] hosts up to 56 cores. It is conceivable that the core count will continue to increase
past one hundred.

To serve inter-core traffic, processor chips use Networks-on-Chip (NoCs) [7, 8]. Typically,
manycore NoCs are packet-switched networks composed of routers and links arranged in a 2D grid.
While this design is more scalable and efficient than buses, the latency and energy consumption of
NoCs start to become a problem at these core counts [5, 6]. In particular, messages that need to
be broadcasted or traverse a high number of routers before arriving to the intended destination are
problematic [12]. The high latency may stall cores as they wait for a response or to synchronize,
which throttles execution. Slowdowns of 2–3× have been estimated in processors with several tens
of cores [12, 13] and worse effects are expected at higher core counts.

To improve the scalability of NoCs to high core counts, emerging interconnect technologies such
as 3D [17], nanophotonics [20], and wireless [31, 111] have been proposed. Among them, wireless
technology has shown promise due to its inherent broadcast nature and very low latency for chip-
wide transmissions, which is lower than that of conventional NoCs by an order of magnitude [111].
Moreover, no wiring infrastructure is needed, which provides a flexibility that is unattainable with
other technologies [26].

The wireless approach is enabled by recent advances in CMOS RF technology, which have al-
lowed the integration of millimeter-wave antennas and transceivers on chip [30, 31]. Based on
these, multiple Wireless Network-on-Chip (WNoC) designs have been proposed. Using simula-
tions, these designs are shown to achieve substantial network-level improvements with respect to
conventional NoCs [111, 112, 113], and help manycores attain substantial execution speedups and
reduced energy consumption [26, 51]. These estimations have assumed wireless bandwidths of a
few tens of GHz and low-order modulations, which are both feasible with current technology.

To fully realize the potential of WNoCs, however, it is necessary to build Medium Access Con-
trol (MAC) mechanisms that are able to cope with the heterogeneity and performance requirements
of the multiprocessor scenario [114]. MAC protocols need to adapt to wide and fast changes in
the on-chip traffic, while incurring little to no delay in the transmission. Unfortunately, existing
efforts [26, 51, 112, 115, 116] are unable to capture such fast variations, resulting in execution time
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slowdowns and energy waste.
In this work, we present Fuzzy-Token, a new MAC protocol capable of dynamically adapting

to the traffic demands of the application, minimizing transmission latency and increasing network
throughput. The Fuzzy-Token algorithm combines the strengths of token passing and contention-
based MAC protocols [117] and, with a few simple rules, adapts to different types of workloads.
The algorithm is evaluated using both a synthetic traffic model [118], and a set of real application
traces. Our simulation-based evaluation shows that Fuzzy-Token consistently provides one of the
lowest packet latencies of the evaluated WNoC MAC protocols. On average, the packet latency
in Fuzzy-Token is 4.4× and 2.6× lower than in a state-of-the art contention-based WNoC MAC
protocol and in a token-passing protocol, respectively.

3.2 BACKGROUND

Traditionally, wired NoC architectures use a packet-switched network with each processor con-
nected to a router as shown in Fig. 1.1. Each router has several pipeline stages for enqueuing,
computing the route, arbitration, and dequeuing packets [5]. Data packets move from source to
destination via multiple hops, with each hop incurring delays and energy consumption. A mesh
is a typical topology for manycores due to its simple layout and low inter-router link length [5].
However, the average hop count scales with

√
N, where N is the number of cores. Several works

[12, 13, 111] have shown that execution suffers significant slowdowns as a result of high com-
munication latency. In response to this, high-radix topologies have been proposed that reduce the
network diameter, but at the cost of non-trivial router chip area and energy consumption.

Wireless technology can reduce the latency of a chip-wide communication to a few clock cycles
regardless of the size of the chip or the number of cores. To that end, one antenna and transceiver
are co-integrated in each core or cluster of cores, as shown in Fig. 1.1. Information coming from
the cores is modulated and the resulting signals propagated through the chip package, bouncing
off the metallic heat sink and reaching the receivers. Propagation causes signals to be attenuated
a few tens of dBs, mainly due to spreading loss and the relatively high transmission loss in the
bulk silicon [119]. These losses, on the other hand, prevent the enclosing package from acting as a
reverberation chamber.

Antennas are either variants of planar integrated dipoles [30] or vertical monopoles implemented
with vias that are drilled through the silicon die [119]. In both cases, the operating frequency is
chosen within the mm-wave and sub-THz spectrum to minimize antenna size and avoid undesired
near-field coupling. The link budget is generally determined by targeting a Bit Error Rate (BER)
similar to that of on-chip wires, this is, below 10-12. For the typical channel attenuation values seen
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in the on-chip environment, it has been shown that simple modulations such as On-Off Keying
(OOK) are able to minimize power consumption (toward 1 pJ/bit/cm) and chip area (toward 0.1
mm2 per transceiver) while maintaining relatively high speeds (10+ Gb/s) [31]. This is because
these modulations avoid power-hungry components such as Phase-Locked Loops (PLLs).

From the MAC design perspective, WNoCs are a very demanding scenario. Chip traffic is
highly heterogeneous, meaning that the injection rate, burstiness (temporal injection distribution)
and hotspotness (spatial injection distribution) of the network vary across and within applica-
tions [118]. These characteristics are generally detrimental to performance [114]. On the other
hand, the WNoC scenario has some good traits. For instance, the number of nodes is fixed and
known beforehand, and due to the enclosed nature of the on-chip scenario, all nodes are within
the same transmission range. Therefore, the hidden/exposed terminal effects can be avoided and
collisions can be detected [51].

3.3 THE FUZZY TOKEN PROTOCOL

Fig. 3.1 illustrates the basic operation of Fuzzy-Token. It has two operation modes: focused

token mode and fuzzy token mode. During a focused period, only the token holder can transmit.
If the token holder transmits, it is guaranteed to suffer no collision. If the token holder does not
transmit, then the protocol switches to fuzzy mode. During a fuzzy period, the token holder can
not transmit, but the nodes within what we call the Fuzzy Area can transmit. If only one of these
nodes attempts to transmit, it succeeds. If more than one of these nodes attempts to transmit, a
collision is detected using the NACK mechanism from [51]. In this case, the protocol switches to
focused mode. By switching between the two modes, the protocol aims to take advantage of the
capabilities of a fair and collision-free token passing protocol (focused mode), which works well
for high, bursty, and all-core (i.e., uniformly distributed in space) traffic; and of a contention-based
protocol (fuzzy mode) that performs better for low and few-core (i.e., hotspot) traffic.

Fuzzy Focused

Silence AND
(fuzzyArea > thr1)

Collision AND
(fuzzyArea < thr2)

Transmission OR
(fuzzyArea < thr1)

Silence OR
Transmission OR
(fuzzyArea > thr2)

START

Figure 3.1: Basic state diagram of Fuzzy-Token.

The amount of contention during a fuzzy period is controlled with the fuzzy area. The fuzzy
area includes the nodes around the token holder that may be able to transmit during the period.
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The idea is to increase the fuzzy area when the load is low to give rapid access to the few nodes
that want to transmit, and decrease it otherwise to minimize collisions. To this end, we always
increase the fuzzy area when a silence is detected and decrease it when there is a collision. Note
that a switch in mode involves a change in the size of the fuzzy area.

Fig. 3.2 (left side) shows the three areas of Fuzzy-Token operation, as a function of the fuzzy
area size and the load. When the fuzzy area size is between two given thresholds thr1 and thr2,
Fuzzy-Token follows the state diagram of Fig. 3.1 (ignore the conditions in parenthesis). We call
this area Normal in the figure. However, in extreme cases, it is advisable to remain in one of the
modes. Specifically, when, after many collisions, the fuzzy area is below thr1, the network benefits
from remaining in the focused mode. On the contrary, when, after many silences, the fuzzy area is
over thr2, the load is low enough for the network to remain in the fuzzy mode.

Figure 3.2: Transitions (left) and extreme cases (right) of Fuzzy-Token.

Fuzzy-Token ensures fairness by circulating the token around the virtual ring. In more detail, the
token is passed implicitly at every event (silence, collision, or successful transmission) regardless
of the protocol mode. This is important because multithreaded applications generally run as slow
as the slowest of the threads. Thus, latency tails generated by unfair access will significantly
slow down computation, even if they are infrequent. It is worth noting that, thanks to the unique
characteristics of the on-chip scenario, all nodes have a consistent view of all events. This allows
Fuzzy-Token to pass the token implicitly and to update the fuzzy area position and size without
explicit messages or centralized control.

3.3.1 Algorithm

The algorithm is divided into steps. In each step, all the nodes in the chip are in the same mode
(focused or fuzzy), and one node is the token holder. A step lasts for the duration of an event
(silence, collision, or successful transmission). On termination of the step, the next node in the
virtual ring becomes the token holder, the fuzzy area changes in position and maybe in size, and
the mode may change.
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Figure 3.3: Fuzzy-Token protocol example. It assumes the protocol starts in a fuzzy mode step and
its initial fuzzy area size is 5.

The algorithm is executed in each of the nodes of the chip. First, the node checks whether the
mode is fuzzy or focused. To this end, there is a bit called periodMode that tells the mode of the
step. Based on the mode, the operation of the node is as follows:

Fuzzy mode. In fuzzy mode, if the node is in the fuzzy area and has a ready packet, it considers
transmitting it with a certain probability. The fuzzy area is encoded with set bits in a vector with
as many entries as nodes in the chip. The vector also contains the transmission probability pi for
each node i. If the node decides to transmit, a variant of the BRS protocol [51] is used: the node
first sends the preamble and then senses the channel. If the token holder detects a collision of
preambles from multiple nodes, it sends a NACK. When a sender senses the NACK, it cancels the
transmission; otherwise, it proceeds with the rest of the transfer. By using this mechanism, Fuzzy-

Token reduces the time and energy penalty of collisions, as it avoids the unnecessary transmission
of the whole message. The protocol differs slightly from that of [51]: here, it is the token holder
the one that sends the NACK, saving energy — in BRS, all idle nodes detect the collision and send
NACKs concurrently. For this to work, however, the token holder cannot try to send a packet.

After the packet is sent (C cycles), or the collision is detected (2 cycles), or no packet transmis-
sion is even attempted (1 cycle), the algorithm starts a new step. Since the packet size and wireless
bitrate are known and static, all nodes are synchronized and proceed in lockstep.

Focused mode. The focused token mode is simpler, as it is based on a conventional token
protocol. The token holder is stored in the variable tokenID, which is updated at the end of each
step. In this mode, the node checks whether it is the token holder and whether it has a packet ready
to transmit. If both conditions are true, the node transmits the packet; otherwise, it remains idle.
After the C cycles of a successful transmission or 1 cycle of silence, a new step starts.

Housekeeping. At the end of each step, the variables tokenID and fuzzy area are updated, and
periodMode may be updated. The tokenID is incremented by one modulo the number of nodes in
the ring. The fuzzy area is rotated one position as well. In addition, the fuzzy area size is increased
if a silence occurred and decreased if a collision occurred. If a successful transmission occurred,
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we choose not to change the fuzzy area size, as it may be close to the optimal value. Finally, the
periodMode bit may be updated according to the state machine rules shown in Fig. 3.1.

3.3.2 Design Decisions

Fuzzy-Token involves several design decisions, and includes a set of parameters that determine
how aggressive the protocol is — e.g., how eagerly it changes the fuzzy area size. In this section,
we discuss these design decisions. Default values are given in Sec. 3.4.

Probability of transmission. In fuzzy mode, the probability of transmitting may be a function
of the fuzzy area size and the distance to the token holder.

Fuzzy area size update. Fuzzy-Token uses an additive-increase-multiplicative-decrease (AIMD)
approach to update the fuzzy area size. This approach increases the fuzzy area size slowly when
the load decreases and reduces it abruptly when collisions are detected. This is because collisions
are more harmful than lost opportunities to transmit. Such AIMD approach has been shown to
lead to high performance and stability in common protocols. In our scheme, we update the fuzzy
area immediately after silence or collision events occur. This is in contrast to protocols that modify
their behavior after collecting metrics during an observation epoch (see Sec. 3.6).

Activation thresholds. In the extremes, Fuzzy-Token becomes purely driven by the token pass-
ing protocol (focused mode) or the contention-based protocol (fuzzy mode). Fig. 3.2 (right side),
shows an example of the two extremes. The figure assumes that thr1 is 3 nodes and thr2 is all
the nodes in the chip minus 3. In this case, the chart where the fuzzy area includes all the nodes
minus 2 is operating in fuzzy mode only. The chart where the fuzzy area includes only two nodes
is operating in focused mode only. By setting the thr1 and thr2 thresholds, we affect how often the
protocol stays in either extreme mode.

Token passing order. A statically-ordered virtual ring is just one of the possible ways of order-
ing the passing of the token. In any ordering, two hotspot nodes placed close together may lead to
multiple collisions and multiple silences. To alleviate this, the token passing order can be changed
at runtime, possibly in a pseudo-random way and at every collision. To ensure that all nodes agree
on the same order without having to exchange messages, a synchronized random number generator
seed can be assumed.

3.3.3 Walkthrough Example

Fig. 3.3 shows an example of Fuzzy-Token’s operation. Fig. 3.3(a) shows the node numbering,
that Node 0 is the token holder, and that Nodes 2, 3, 8 and 11 want to transmit. We assume an
initial fuzzy area of 5 and that the protocol is in a fuzzy mode step. Fig. 3.3(b) shows the operation
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in the step. Nodes 3 and 8 are outside the fuzzy area, whereas Nodes 2 and 11 are in and could
contend for the channel. Assume that only Node 11 proceeds to transmit. Because the transmission
is successful, the next step will start with the same fuzzy area size and, following Fig. 3.1, in fuzzy
mode. Fig. 3.3(c) shows the next step, where the token is owned by Node 1 and the fuzzy area
has rotated. Both Nodes 2 and 3 are within the fuzzy area. Assume that both proceed to transmit
and therefore collide. As a result, the fuzzy area size will decrease in the next step. We use an
AIMD approach that sets FAnew = dFAold/2e, where FA is the fuzzy area size. Assume that the new
fuzzy area size is less than thr2. As a result, the next step will start with a fuzzy area size of 3 and,
following Fig. 3.1, in focused mode. Fig. 3.3(d) shows the operation in the step. The token holder
(Node 2) transmits successfully. As a result, both the fuzzy area size and the focused mode remain
unchanged. Fig. 3.3(e) shows the operation of the next step, where Node 3 is the token holder. In
this step, Node 3 transmits successfully.

3.4 SIMULATION ENVIRONMENT

We compare through simulations the average packet latency and throughput of three different
protocols: BRS [51], token passing, and Fuzzy-Token. For a fair comparison, we optimize the
token passing protocol with the same assumption as in Fuzzy-Token, namely, that all nodes have
a consistent view of the wireless channel. Thus, the passing of the token is done implicitly, with
zero delay.

Evaluations are carried out with the cycle-level Multi2sim [72] architecture simulator. We aug-
mented Multi2sim with wireless on-chip communication modules that model collisions and MAC
protocols. Multi2sim admits synthetic traffic and multithreaded applications. The architecture pa-
rameters are summarized in Table 3.1. A wireless transfer can be performed in four clock cycles:
one for the preamble and three for the payload. BRS [51] and the fuzzy mode of Fuzzy-Token use
one extra cycle to detect a potential NACK.

3.4.1 Traffic Patterns

Synthetic Traffic Model

Each of the cores acts as a generator that injects packets into the network. Typically, NoCs are
evaluated with synthetic traffic models that have, as the main parameter, the injection rate λ in
packets/cycle. Common models assume a Poisson process with the same average injection rate for
all cores. However, in parallel applications, packet injections show a clear self-similarity caused
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Table 3.1: Simulated architecture.

Architecture
Processor chip 64 cores, x86 ISA, 1 GHz, 22-nm tech
L1 I+D private, 32-KB, 2-way, 64B lines, 2 cycles
L2 shared, 512-KB/core, 8-way, 6 cycles
Coherence MOESI directory + Replica [26]
Off-chip memory 4 controllers, 100 cycles delay
NoC 2D Mesh, 2 cycles/hop, 128-bit links

WNoC Parameters
Network 64 nodes, 80-bit packets (preamble: 20 bits)
MAC protocols BRS [51], Token, Fuzzy-Token
PHY layer OOK, 20 Gb/s, power: 39 mW (TX), 39 mW (RX) [26]

by the data dependencies between threads of the application. Moreover, common memory patterns
such as producer-consumer lead to some cores transmitting more often than others. Our traffic
model takes these aspects into account.

To account for the effect of self-similarity, we model a heavy-tailed distribution of traffic via
a Pareto distribution [120]. The value of the Hurst exponent is H ∈ [0.5, 1), which leads to
increasing degrees of self-similarity when approaching 1 [118]. Moreover, to model an uneven
injection of traffic across nodes, we make use of the hotspotness parameter σ proposed in [118].
There, it was demonstrated that the spatial injection distribution can be approximated as a Gaussian
process where the value of σ represents the standard deviation. Low values of σ represent higher
concentrations of traffic around a few selected nodes.

Real Applications

We model a wireless architecture in Multi2sim. This allows us to obtain the latency statistics of
the three MAC protocols when executing multithreaded applications. Table 3.1 shows the details
of the manycore architecture modeled. We model Replica [26] due to (1) its large speedups with
respect conventional architectures, and (2) the relatively high load that it puts on the wireless net-
work. The NoC and memory parameters are in line with the state of the art in manycore processor
design. We run a selection of shared-memory multithreaded applications from the Splash2, Parsec,
and Crono benchmark suites, which are suited to the characteristics of WNoCs.

3.4.2 Performance Metrics

The MAC protocols are evaluated on the basis of packet latency and throughput. Latency is
defined as the time between the launching of a packet into the WNoC and its correct reception at
all the intended destinations, measured in clock cycles. Throughput is measured in transmitted bits
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(a) Latency (b) Throughput (c) Energy

Figure 3.4: Performance and energy comparison for different MAC protocols over increasing load.

per clock cycle. Another important metric is the energy consumed per transmitted bit, which may
increase due to collisons. We calculate the energy per transmitted bit Ebit as

Ebit = EOK

(
1 +

Lpre

Ltx
Nre

)
, EOK = ETX + (N − 1)ERX, (3.1)

where Lpre and Ltx are the length of the preamble and of the complete packet, respectively, and
Nre is the average number of re-transmissions per successfully transmitted packet. EOK is the
energy per bit of a non-colliding packet. It can be found as a function of the energy per bit of
the transmitting and receiving part of the wireless transceiver (ETX and ERX, respectively), and the
number of cores N. In turn, if PTX and PRX are the power consumed by the wireless transmitter
and receiver, respectively, and R is the transmission speed, we compute ETX = PTX/R and ERX =

PRX/R.

3.5 EVALUATION

3.5.1 Evaluation with Synthetic Traffic

We start by comparing the protocols with synthetic traffic. By default, arrivals are distributed
Poisson and the injection process is equidistributed across all cores. The default Fuzzy-Token

configuration is: equal 1/k probability of transmission for all the k nodes inside the fuzzy area,
increment the fuzzy area by 1 in each silence, decrement the fuzzy area to half (with ceiling)
in each collision, thr1 = 0.1 × N, thr2 = 0.9 × N, and static token ring. In all cases, we repeat
the simulations 10 times and obtain the geometric mean of all runs. Although we performed a
sensitivity analysis for many different combinations of these parameters, including a Gaussian
probability of transmission function, a wide range of fuzzy area increase/decrease factors, several
pairs of thresholds, and a pseudo-random ring ordering, the choices shown in this section were
found to be optimal. Due to space constraints, we do not show the sensitivity analyses.

Fig. 3.4 shows the packet latency (a), packet throughput (b), and energy per bit and core (c)
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for the different MAC protocols as the load increases. Fig. 3.4(a) shows that Fuzzy-Token is
able to deliver the low latency of BRS at low loads and almost match the latency of Token at
high loads. At intermediate loads, Fuzzy-Token can outperform both BRS and Token thanks to
its intelligent management of contention. In Fig. 3.4(b), we see that Fuzzy-Token achieves the
same throughput as Token, leaving BRS behind. In fact, at very high loads, Fuzzy-Token ends
up converging to Token by design. We finally note that, as Fig. 3.4(c) illustrates, Fuzzy-Token

achieves high performance with only a moderate energy overhead over Token (less than 12%).
The overhead is mainly due to collisions at intermediate loads.

Energy-wise, it is also worth noting that the energy consumption of Token is not affected by the
load, since the token is passed implicitly, and thus does not consume energy. This, however, comes
at the cost of high latency at low loads. In contrast, the energy of BRS increases with the load
because of increasing collisions, but then decreases. This effect is due to the finite population of
the chip scenario: at very high loads, the backoff reaches high values and reduces the probability
of collisions at the expense of unacceptable latency. Fuzzy-Token attains the low-load latency of
BRS while avoiding its high energy consumption at higher loads.

Fig. 3.5 shows the latency distribution of the three protocols for two different loads: a moderate
one (λ1=0.045 packets per cycle per chip) and an intermediate one (λ2=0.110 packets per cycle per
chip). These loads are also shown in Fig. 3.4.

At λ1=0.045 (Fig. 3.5(a)), most transmissions take less than 30 cycles with BRS, less than 60
with Fuzzy-Token, and less than 90 with Token. However, due to collisions, 1.29% of the packets
with BRS take more than 500 cycles, with a worst-case of ~3400 cycles. On the other hand,
Fuzzy-Token has a worst-case of ~330 cycles, which is the best among the three protocols.

At λ1=0.110 (Fig. 3.5(b)), BRS still delivers many packets within the first 60 cycles. However,
due to the high number of collisions, 28.9% of the packets take more than 500 cycles to be deliv-
ered, with a worst-case of ~110,000 cycles. On the other hand, Fuzzy-Token also delivers many
packets within the first 60 cycles, while providing a worst-case latency of ~390 cycles (again the
best among the three protocols). Overall, these plots show the difference between BRS and Fuzzy-

Token. At moderate loads, BRS does well but, at intermediate loads, BRS generates a long tail. In
contrast, Fuzzy-Token approaches the best of BRS and Token at all loads.

Hotspot Traffic. In hotspot workloads, a few processors inject most of the traffic. In this sit-
uation, it has been shown that contention-based protocols such as BRS outperform more rigid
collision-free alternatives such as Token [115]. To confirm the hypothesis that Fuzzy-Token ap-
proaches the best of the two types of protocols, we increase the spatial concentration of the traffic
via the σ parameter mentioned in Section 3.4.1 (i.e., low σ means more hotspot traffic). The
inter-arrival time is kept exponential.
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(a) Moderate load, λ1 = 0.045.
Tail: 1.29% in BRS, 0% in others.

(b) Intermediate load, λ2 = 0.110.
Tail: 28.9% in BRS, 0% in others.

Figure 3.5: Latency cumulative distribution function for the protocols at different loads. Tail is
defined as delivery time over 500 cycles.

(a) Moderate load, λ1 = 0.045 (b) Intermediate load, λ2 = 0.110

Figure 3.6: Latency for hotspot traffic with different σ values. Lower σ means that fewer nodes
inject most of the traffic.

Figs. 3.6(a) and 3.6(b) show the latency for hotspot traffic with different σ values, at λ1 = 0.045
and λ2 = 0.110 packets per cycle per chip, respectively. With λ1 = 0.045, the load is moderate
and contention is low. We show that Fuzzy-Token is just a couple of cycles slower than BRS, which
maintains a very low latency regardless of the value of σ. This is because Fuzzy-Token has a large
fuzzy area and, therefore, nodes can transmit as soon as they generate the packets, irrespective of
their location. Token has a high latency, which worsens for low σ because the few transmitting
nodes have to wait for their turn to issue a packet.

With λ1 = 0.110 (Fig. 3.6(b)), contention starts to become important. In this case, BRS still
benefits from a low number of contenders at small σ, as traffic becomes more concentrated. To-
ken performs poorly in such a situation because many clock cycles are wasted passing the token
between a few hotspot nodes. Fuzzy-Token is capable of maintaining a low latency across all situ-
ations, outperforming the two other protocols in nearly all cases. Similar tendencies are observed
for loads beyond λ2, but are not shown for brevity.

Bursty Traffic. We repeat the same set of experiments now changing the temporal distribution
of traffic, assuming σ = 100. Burstiness is modeled via the Hurst exponent H mentioned in Sec.
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(a) Moderate load, λ1 = 0.045 (b) Intermediate load, λ2 = 0.110

Figure 3.7: Latency for different H values. High H means longer bursts.

Figure 3.8: Average packet latency normalized to Fuzzy-Token’s latency for real applications.

3.4.1, with higher H values leading to longer bursts and longer intervals between bursts.
Figs. 3.7(a) and 3.7(b) show the packet latency for different H values, at λ1 = 0.045 and λ2 =

0.110 packets per cycle per chip, respectively. We observe that burstiness is detrimental for most
mechanisms, especially for contention-based protocols like BRS. This is already patent at low
loads: bursty injections create collisions. The latency of Token also increases, but its collision-free
nature absorbs the bursts better. Fuzzy-Token is capable of achieving the best performance at all
burstiness levels. This is because the first collisions occurring at the burst onset make Fuzzy-Token

to become pure token passing. As the burst is being served, the fuzzy area grows gradually and
allows the last nodes of the burst to access the channel earlier. Fig. 3.7(b) serves to confirm that
increasing the load leads to early saturation, especially for BRS. Fuzzy-Token avoids contention
and converges to Token to better absorb the intense bursty traffic.

3.5.2 Evaluation with Real Applications

Fig. 3.8 shows the average packet latency for different MAC protocols normalized to that of
Fuzzy-Token in real applications. This figure showcases the strengths of Fuzzy-Token, which con-
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sistently provides a latency that is among the lowest of all evaluated protocols. On average, Fuzzy-

Token’s latency is 4.4× lower than BRS’, 2.6× lower than Token’s, and 1.13× lower than Replica.
Applications such as canneal and radiosity have a relatively low load and, therefore, Token

performs poorly. Other applications such as water and CC are communication-intensive and in-
herently bursty. As a result, BRS suffers an average latency that is two orders of magnitude higher
than that of Fuzzy-Token. In cases such as bodytrack and ocean-nc, Fuzzy-Token outperforms BRS,
Token, and Replica, since traffic alternates between different types of patterns where Fuzzy-Token

is consistently better.

3.6 RELATED WORK

Multiplexing. First MAC protocols proposed for the WNoC paradigm used time, frequency, or
code orthogonal channels [36, 112]. This approach, however, does not scale well beyond a few
cores due to the hardware overhead. Spatial multiplexing has also been proposed in [113], but the
use of directional antennas eliminates the broadcast advantage of WNoC, and its applicability is
unclear in packaged environments with lots of multipath.

Token passing. Different variants of token passing have been examined as alternatives to chan-
nelization [111, 116]. These solutions work well for distributed, high loads, but not for hetero-
geneous or hotspot traffic. Also, the protocol is not adaptive and does not scale. Mansoor et al.

attempt to minimize these issues by means of a predictive scheme that estimates the optimal to-
ken occupancy of each node [116]. The work of [121] proposes token-like distributed arbitration
protocol with single-bit concurrent probing. However, the probing introduces unfeasible bit-level
synchronization requirements. Fuzzy-Token does not need such complex hardware while still lever-
aging the advantages of token passing at high loads. On top of that, Fuzzy-Token is flexible and
scalable.

Random access protocols. Contention-based protocols have been explored for WNoC [115,
122] due to their low latency at low loads. BRS-MAC [122] minimizes latency also under moder-
ate loads by using preamble transmission, collision detection, or collision notification via negative
ACKs. At high loads, however, the protocol saturates early due to the many collisions. Fuzzy-

Token borrows concepts from BRS-MAC [122], but builds a hybrid protocol that reacts before
collisions become too penalizing.

Hybrid approaches. In [26, 115], token/contention hybrid protocols are proposed that attempt
to leverage the benefits of both approaches. In [123], utilization metrics are gathered and used to
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switch between token or random access modes, whereas [26] decides which protocol to use based
on the load observed during the first thousands execution cycles of an application. This can have
an negative impact in bursty and fast-changing traffic. Instead of working as two discrete protocols
connected by a controller, Fuzzy-Token represents a continuous solution that naturally and rapidly
adapts to the load without having to collect any utilization statistics. As shown in Sec. 3.5, this
provides finer-grained control and better performance at for all kinds of workloads.

Hybrids in other scenarios. Traditionally, research on LAN networks has also tried to combine
fixed and random access. In [124], the number of nodes is divided into fixed-size groups connected
via a virtualtoken-passing ring. Groups contend for the channel with CSMA/CD, but the token-
holding group has priority. Although this is similar to Fuzzy-Token, the fixed size of the groups and
the requirement for ACKs after every transmission discourages its use on multiprocessors. Another
hybrid protocol is given in [125], wherein the token holder has priority after the channel changes
from busy to idle in any contention period. In the rest of cases, however, all nodes can contend
for the channel, which leads to early saturation. We addressed this problem in Fuzzy-Token by
the use of dynamic contention windows (i.e. the fuzzy area). Ehpremides et al. [126] propose a
probabilistic TDMA scheme where nodes transmit to a preferred slot with a given probability a or
elsewhere within the frame otherwise. The idea of the two extremes is laid out, but the decision on
the parameter a is not discussed. Fuzzy-Token, instead, naturally and gradually adapts to the load.

3.7 CONCLUSIONS

This work has presented Fuzzy-Token, a MAC protocol uniquely tailored to the particularities of
the WNoC scenario. We have shown that with a set of simple rules, Fuzzy-Token can achieve the
low latency of contention-based protocols at low loads and the high throughput of fair collision-
free protocols such as token passing. We have evaluated our protocol in a variety of synthetic traffic
patterns, as well as with real application traces, demonstrating a several-fold speedup with respect
to other state-of-the-art protocols. Our contribution, together with other advances in the field of on-
chip networking, pave the way for scalable and efficient manycore processors for general-purpose
computing, machine learning acceleration, and data center as well as high-end server processors.
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CHAPTER 4: WIDIR: A WIRELESS-ENABLED DIRECTORY CACHE COHERENCE
PROTOCOL

4.1 INTRODUCTION

Exploiting a combination of innovative chip manufacturing techniques and reduced semiconduc-
tor feature sizes, computer manufacturers continue to increase the core counts of processor chips.
With more on-chip cores and bigger caches, systems can run bigger problems with limited cost
increase. For example, Ampere’s Altra [108] uses 7nm technology to support up to 80 ARM cores
and a 32 MB Last-Level Cache (LLC) with a coherent mesh interface on a single die. As another
example, AMD’s EPYC 7742 processor [109] uses a chiplet organization and 7nm technology to
support up to 64 cores (2-way SMT) and a 256 MB LLC with the Infinity Fabric interconnect. Fur-
ther, Intel’s Xeon Platinum 9282 processor [110] uses a dual-die package and 14nm technology to
host up to 56 cores (2-way SMT) and a 77 MB LLC connected with a mesh interconnect. In the
near future, it is likely that on-chip core counts will continue to increase.

For these manycores, shared memory is the most popular programming and execution model.
The reasons are shared-memory’s ease of programming, well-developed existing algorithms, and
widespread libraries such as POSIX threads and OpenMP. To support shared memory at this scale,
designers build directory-based hardware cache-coherence protocols [127]. Designing such pro-
tocols is an arduous process. Importantly, as the core count goes up, it is becoming harder to
engineer cache-coherence protocols that deliver high performance without an inordinate increase
in complexity and cost.

As an example, consider patterns where a group of cores frequently reads and writes a shared
variable. Coherence protocols rely on invalidations to keep coherence [128, 129, 130], and do not
support these patterns efficiently. As soon as a core writes the variable, all the other sharers get
invalidated, and any subsequent read by another core suffers a costly cache miss. Sending invalida-
tions and then re-reading the data creates long-latency transactions in a large on-chip interconnect.
Update-based protocols [131] are not the solution either, as they have shortcomings for many com-
mon patterns, which has prompted designers to eschew them. As a result, if programmers want
to attain high performance, they have to carefully tune the sharing behavior of their applications,
ensuring that patterns like the ones mentioned appear infrequently.

Wireless Network on Chip (WNoC) is a new technology that has recently seen a lot of inter-
est [34, 35, 36, 37, 38, 39, 40, 41]. In WNoCs, each core or group of cores in a manycore has
a transceiver and an antenna, which it uses to communicate wirelessly with other cores. While
the bandwidth of a WNoC is limited (only one or a few messages can be transmitting at a time),
a WNoC supports low-latency transfers, since a message can cross a large manycore in about
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5ns [31]. Further, WNoCs naturally support update multicasts and broadcasts. As a result, WNoCs
have been proposed to speed-up applications on manycores. For example, WiSync [45] uses it to
speed-up synchronization, while Choi et al. [132] use it to accelerate CNN training in CPU-GPU
heterogeneous architectures, and Replica [46] uses it to speed-up the execution of communication-
intensive and approximate computations.

An intriguing question is whether a conventional, wired cache coherence protocol can be aug-
mented to use a wireless network so that patterns like the ones described above can be supported
efficiently. Frequent read-write sharing by multiple cores can indeed be efficiently supported by a
WNoC: writes update all sharers without complicated multi-hop coherence transactions or lengthy
message routing; reads can access data locally. However, to implement a complete coherence
protocol, one needs to carefully combine wired and wireless transactions in a seamless manner.

In this work, we present such a protocol, which we call WiDir. WiDir extends an invalidation-
based directory cache coherence protocol with some wireless transactions. The goal is to efficiently
support frequent read-write sharing within a group of cores — which has largely eluded conven-
tional coherence protocols. WiDir seamlessly transitions between wired and wireless transactions
for the same datum based on the access patterns in a programmer-transparent manner. The end
result is higher performance without the need to tune applications and hurt programmability.

For the design in this work, we start with a conventional invalidation-based MESI protocol over
a wired NoC. For a given cache line, WiDir uses this protocol when there are few sharers. Then,
when the number of sharers goes over a certain threshold, the line transitions to the Wireless (W)
state, where sharing between cores uses wireless transactions. When the number of sharers falls
back down to the threshold, the line goes back to using MESI over the wired NoC. The work
describes the WiDir protocol transitions in detail.

Our evaluation using simulations running SPLASH and PARSEC applications shows that WiDir

substantially reduces the memory stall time of the applications. As a result, for 64-core runs,
WiDir reduces the execution time of applications by an average of 22% compared to plain MESI.
Moreover, WiDir is more scalable than MESI. These benefits are obtained with a very modest
power cost.

Overall, the contributions of this work are:

• The novel use of WNoCs to enhance a cache coherence protocol. This use further builds up
the case for WNoCs.

• The WiDir directory-based hardware cache-coherence protocol that seamlessly combines
wired and wireless transactions.

• An evaluation of WiDir.
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4.2 BACKGROUND & MOTIVATION

4.2.1 Motivation for Wireless Network On Chip

Traditionally, a wired Network on Chip (NoC) uses a packet-switched interconnection fabric
with each processor connected to a router as shown in Figure 1.1. Routers enqueue packets, com-
pute routes, arbitrate, and dequeue packets in each hop towards the destination, incurring delays
and energy consumption. To connect the routers, a mesh topology is typically used due to its
simple layout and low link length [5]. However, the average hop count scales proportionally to√

N, where N is the core count. There are other, high-radix topologies that reduce the network
diameter [14], but at the expense of area and energy cost at the routers.

In contrast, WNoC architectures [34, 35, 36, 37, 38, 39, 40, 41] are attractive because they can
transfer a message chip-wide with a latency of only a few clock cycles, regardless of the size of
the chip or the number of cores. Each core or group of cores has an antenna and a transceiver,
as shown in Figure 1.1. Small antennas in the mmWave bands and beyond [30, 42, 43, 44] can
be feasibly integrated, and broadcast messages [45, 46, 47]. Figure 1.1 shows vertical monopole
antennas based on Through-Silicon Vias (TSVs), which perforate the bulk silicon [44]. Information
coming from a core is modulated by the transceiver and sent by the antenna. The resulting signals
propagate inside the chip package, bouncing off the metallic heat sink until they reach the receivers.
Propagation causes signals to be attenuated a few tens of dBs, mainly due to spreading loss and
the relatively high transmission loss in the bulk silicon [48, 49, 50]. However, these losses are
tolerable [31], and prevent the enclosed package from acting as a reverberation chamber.

4.2.2 Uses of Wireless Network On Chip

There are multiple proposals to use WNoCs to enhance the architecture of manycores [45, 46,
47, 132]. In general, these works leverage the low latency and affordable broadcast of a WNoC
to accelerate key patterns. Mondal et al. [47] and WiSync [45] use a WNoC to transfer all the
accesses to synchronization variables, which are often traffic hot spots. In WiSync, synchronization
variables are placed in a special memory called Broadcast memory. Using the WNoC only requires
re-targeting the synchronization libraries or macros and, therefore, is transparent to programmers.
Choi et al. [132] use a WNoC to transfer a fraction of the traffic generated during the training of a
Convolutional Neural Network (CNN) in a CPU-GPU integrated architecture. The network design
is architecture-aware and, like WiSync, transparent to the programmer. Replica [46] uses a WNoC
to carry all the accesses to communication-intensive variables. The programmer has to explicitly
identify these variables, which requires some effort. These variables are then placed in a special
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memory accessible by the WNoC. Replica also introduces approximate transformations, both in
hardware and in software, which exploit the characteristics of WNoC communication. Mondal et

al., WiSync, and Replica partition the data structures into those that use the wired and those that
use the wireless NoC, whereas Choi et al. do not.

In this work, we focus on a different problem: enlisting both NoCs in supporting cache co-
herence protocol transactions. Both NoCs need to operate seamlessly together in a programmer-
transparent manner.

4.2.3 Scalable Cache Coherence Protocols

Scalable cache coherence is attained through the use of directories [128, 129, 130, 133, 134,
135]. Directory cache coherence is widely used commercially, such as in Intel’s Core i7 systems.
Commercial systems use invalidation-based schemes [128, 129, 130] rather than update ones [131].
This is because, in general, update protocols create more traffic and are subject to pathological
cases. Examples of such cases are when data is left behind in a cache after the process migrates to
another core, or when a process simply initializes data structures for several other processes, which
will be running on other cores. There are proposals for hybrid invalidation-update protocols [136,
137].

In multiprocessors with large core counts, it is very costly for the directory to keep presence bits
for all possible cores that could share a line at a time. As a result, designers use limited pointer
schemes [129, 130], where a directory entry can only keep pointers to a handful of cores for each
line. When the number of cores that want to share a line overflows the available limited pointers,
a special action is taken, such as setting a broadcast bit, evicting a pointer, or re-configuring the
directory entry. From then on, the directory will record sharing information in a less precise or less
efficient manner.

The motivation for limited-pointer schemes is experimental data showing that an individual write
often invalidates only a few caches [138]. But, as the machine’s core count increases, the average
write invalidates more caches. Further, if the write did not invalidate the sharers, more sharers
would accumulate, and a later write with invalidation would be more expensive.

To gain insight into this issue, we modeled writes that update rather than invalidate, and mea-
sured the number of sharers that a line accumulates until the line is evicted from the LLC. For the
64-core machine and applications described in Section 4.5, this number is on average 21 sharers.
We then considered the cores that shared the line before a write, and measured what fraction of
them re-read the line after the write. Such fraction is, on average, 56%. This data suggests that if,
under some circumstances, we allow a write to perform a wireless update to the sharers rather than
invalidating them, we may improve performance.
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4.3 DESIGN OF WIDIR

4.3.1 Main Idea

State-of-the-art directory protocols for large core counts use invalidation-based limited pointer
(or coarse-vector) schemes [129, 130, 139]. As more and more cores read a shared line, the limited
pointers for the line overflow, and a special action is taken in the directory entry for the line, such as
setting a broadcast bit, evicting a pointer, or reconfiguring the directory entry. A subsequent write
(and sometimes even a read) becomes more expensive. For example, it may trigger the broadcast of
an invalidation to all the cores in the machine. As a result, existing cache coherence protocols for
large core counts are unable to efficiently support groups of cores frequently reading and writing a
shared line.

Wireless communication is ideally suited to this type of sharing pattern. The writer core broad-
casts the update to all the current sharers in a short, fast, multicast transaction. As the sharers issue
subsequent reads, they obtain the up-to-date version of the datum from their caches.

In this work, we present a hybrid directory-based cache coherence protocol that combines a
wired and a wireless component. We call the protocol WiDir. The directory entry for any given
shared line can dynamically transition between wired and wireless coherence transactions during
program execution, depending on the current access pattern.

Initially, a line uses an invalidation-based protocol operating on the wired NoC. When the num-
ber of sharers for the line reaches a certain threshold count (e.g., when all the pointers to sharers
are used up), the line transitions to using wireless coherence transactions.

Later, the protocol may revert back to using wired coherence transactions for the line. This
occurs when the directory realizes that the number of active sharers of the line has decreased
below a certain threshold count. The directory is aware of this case because it is informed when a
sharer invalidates or evicts the line from its cache — either because the sharer is not interested in
the line anymore or because it needs the cache space for another line.

The WiDir protocol is supported by a manycore like the one shown in Figure 4.1. Each node
in the manycore contains: a core with private caches (i.e., L1 instruction and data caches in the
figure), a local slice of the shared last level cache (LLC) and its corresponding directory slice, a
network interface, a local router to connect to the wired network, a transceiver, and two antennas
to communicate wirelessly. To reduce costs in a large manycore, multiple neighboring nodes could
share a single antenna pair.

Following Abadal et al. [45], we use a data antenna and a tone antenna to communicate via a
wireless data channel and a wireless tone channel, respectively. The data channel is centered at the
60 GHz frequency, and is used for data and most coherence messages; the tone channel is centered
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Figure 4.1: Manycore that supports the WiDir protocol.

at 90 GHz and is used as a special-purpose acknowledgment channel. The data channel uses the
BRS wireless protocol [140]. In this protocol, when a node has data to transmit, it first listens to the
medium. When the medium is free, the node transmits a 1-cycle preamble, and leaves the second
cycle empty to find out if there was a collision. If there was a collision, the node squashes the
transmission and, after potentially an exponential back-off period, it restarts the transmission from
the beginning; otherwise, the node completes the transmission in the next few cycles. No further
collision is possible because no other node will attempt to transmit until the current transmission
uses up its allocated wireless cycles.

Cache coherence protocol messages issued by the local core or the local directory controller are
passed via the network interface to the transceiver or the local wired NoC router, depending on the
type of message that is being sent. For incoming messages from either of the two networks, the
process is the same but in reverse.

4.3.2 Basic WiDir Operation

WiDir augments a vanilla invalidation-based directory coherence protocol with a new state,
called Wireless or Wireless Shared (W). In this state, a write by one of the sharers sends the fine-
grain update, rather than the cache line, through the wireless network, and updates the caches of
all the other sharers. A read by a sharer gets the latest version of the datum from its cache. The
wireless network serializes all the updates to any lines in W state.

In W state, the directory does not record which cores share the line, but only how many do. A line
enters the W state from the Shared (S) state of the wired protocol, when the number of sharers goes
above a MaxWiredSharers threshold. Cores with a line in W state are supposed to actively share
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the line, by regularly reading/writing the line. If a core does not do that, the hardware invalidates
the local copy of the line and sends a signal to the directory, which decreases the count of wireless
sharers. When the count decreases to MaxWiredSharers, the line transitions to the S state of the
wired protocol.

The directory structure changes little from a conventional design. Without loss of generality,
WiDir builds on top of a conventional MESI protocol, with a directory implementation that uses
i shared pointers with broadcast (DiriB) [129, 130]. However, many other implementations, such
as a Coarse Vector design (DiriCVr) [130] can easily be adapted as well. The one constraint is
that MaxWiredSharers is no higher than the number of sharer pointers supported by the directory
scheme (i.e., i in DiriB or DiriCVr).

Figure 4.2 shows the structure of the directory and caches in the conventional protocol aug-
mented with WiDir. The changes added by WiDir are in bold. The changes are as follows. First,
one of the states is W. Second, when a directory entry changes to W, the field of sharer pointers be-
comes a count of the sharer cores (SharerCount). Third, the Broadcast bit is always zero. Finally,
each line in the private caches has a field called UpdateCount, which will be described later. Note
that the SharerCount field needs to have as many as log2 N bits, where N is the core count in the
manycore. This is because a wireless line may be shared by all the cores in the manycore.

Figure 4.2: Cache and directory structure of a conventional protocol augmented (in bold) for
WiDir.

To understand how WiDir works, we describe the two main transactions, namely the S→W
transition and the W→S transition. In the process, we will see the need for two new primitives
for wireless cache-coherence protocols, namely the Selective Data-Channel Jamming (Jamming)
and the Tone-Channel Acknowledgment (ToneAck). The former gives the directory the ability to
reject incoming transactions for a directory entry that the directory is currently operating on; the
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corresponding primitives in wired protocols are bouncing or buffering incoming transactions if the
directory entry is busy. The second primitive gives the directory the ability to receive acknowledg-
ment messages from many cores very cheaply. The primitives are discussed in Section 4.3.3.

Transition from Shared to Wireless. When the directory receives a read/write request from
a new core for a line that is already shared by MaxWiredSharers cores, the directory initiates
the transition of the line to W. It does so by broadcasting a BroadcastWirelessUpgrade message
(BrWirUpgr) for the line on the wireless data channel. It also sends a WirelessUpgrade response
(WirUpgr) with the line to the requesting cache using the wired network.

Immediately on reception of BrWirUpgr, all the Tone antennas in the manycore (including the
one in the node with the directory that initiated the message) start a ToneAck operation. For the
initiating directory, this operation fully terminates only when each of the nodes in the machine
completes one of the following operations: (i) the node determines that it does not contain the line
in its private cache, (ii) the node finds out that it contains the line in its private cache and sets its
cache state for the line to W, (iii) the node had requested the line using the wired network and has
finally received either the line or a bounced response from the directory; if it has received the line,
it has set its cache state for the line to W.

Once the ToneAck operation is complete for the initiating directory, the directory stores a count
of the sharer nodes (SharerCount) in the sharer pointers field, and changes the state to W. From
now on, all writes by the sharer processors use the wireless data network. In particular, the core
that, by issuing a request triggered the transition to W, if it intended to write, it now retries the
write using the wireless data network.

However, other nodes complete their ToneAck operation at different times before the initiating
directory does. When they do, they resume execution. It is possible that one of the sharer nodes
now issues a write (now using the wireless data network) before the initiating directory has fully
terminated the ToneAck operation. The directory has to prevent this from happening because its
transition is not completed. Consequently, after starting the ToneAck operation, the antenna in the
node with the initiating directory starts a Jamming operation for this line in the data channel. This
prevents any core from successfully updating this line using the wireless data channel.

After the transition is fully completed, if a new core issues a read/write request to the line, the
transaction will reach the directory using the wired network. In this case, the directory responds
to the requester with WirUpgr and the line, using the wired network and, importantly, increments
SharerCount.

Transition from Wireless to Shared. When cores keeping a line in W state are not interested in
frequently reading/writing the line anymore, the line should return to S. To be able to do so, WiDir
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augments each line in each private cache with a short counter (e.g., 2 bits) called UpdateCount,
which detects when the local core is not interested in the line anymore. When a cached line
enters the W state, UpdateCount is cleared. From then on, every time that the cache receives
a wireless update, UpdateCount is incremented; every time that the local core accesses the line,
UpdateCount is reset. If UpdateCount reaches a certain threshold count, it is assumed that the local
core is uninterested in the line. Hence, the hardware invalidates the line in the cache and sends a
PutWireless message (PutW) to the directory indicating that the core is no longer a sharer. PutW

is sent through the wired network to avoid consuming wireless bandwidth for such a non-critical
message.

When the home directory receives a PutW for a line, it decrements the SharerCount for the line.
If the counter reaches MaxWiredSharers, the line should transition to S.

To do so, the directory broadcasts a WirelessDowngrade message (WirDwgr) for the line on the
wireless data channel. As each node receives the message, its cache controller checks if the cache
indeed has the line. If it does not, no action is taken, otherwise, an acknowledgment message is sent
to the directory with the sender’s node ID. These messages use the wired network to save wireless
bandwidth. When the directory receives all the MaxWiredSharers acknowledgments expected, it
stores the sharer IDs in the Sharer Pointer field in the directory entry. In addition, if the LLC line is
Dirty, it is written to memory. Finally, the state is set to S. The transaction is now complete and the
directory accepts new requests. From now on, all communication occurs via the wired network.

When a core evicts a W line from its private cache because it needs the space for another line,
the hardware also sends a PutW through the wired network to the directory, which will decrease
SharerCount and may trigger a WirDwgr. In addition, to keep the directory up to date, a node
always informs the directory when any line is evicted from its private cache. While this is not
strictly needed for non-W lines to attain the functionality we desire, we do it for simplicity.

4.3.3 Primitives for Wireless Protocols

To support efficient wireless cache coherence protocols, we propose the following two primi-
tives.

Selective Data-Channel Jamming. Conventional cache coherence protocols provide support for
a directory to stop (i.e., buffer) or reject (i.e., bounce) new transactions directed to a directory en-
try that is currently busy. We propose to provide a similar primitive, called Jamming, for wireless
directory protocols. Jamming builds on the BRS wireless protocol [140]. As indicated in Sec-
tion 4.3.1, in BRS, the second cycle of every transmission is left idle, so that the transmitting
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transceiver can listen if any transceiver reports (with a brief negative-Ack) a collision in the first
cycle.

With this support, when a directory temporarily wants to prevent any new wireless transaction
on a line, it proceeds as follows. It directs its transceiver to listen to every message initiation
in the wireless data-channel network. If the first cycle of the message includes a destination ad-
dress equal to the line’s address (or potentially equal if all the address bits were available), the
transceiver forces an interruption of the message by sending a negative-Ack, similarly as if a col-
lision occurred. As a result, the message will be aborted. With this support, the directory prevents
transactions to the line (with some false positives), while enabling transactions to other lines.

Tone Channel Acknowledgment. In conventional cache coherence protocols, some transactions
require a directory to collect acknowledgment messages from multiple nodes. Such messages
take a long time to arrive and, in addition, cause network contention. We propose to support an
equivalent primitive for wireless directory protocols called ToneAck that allows the directory to
receive acknowledgments from many processors very cheaply. In fact, since wireless messages are
broadcasted, ToneAck involves an acknowledgment from all the cores.

ToneAck is triggered when a transceiver initiates a certain packet transmission in the wireless
data channel — e.g., a WirUpgr message requested by the local directory. In ToneAck, all the
transceivers except the initiating one produce a continuous tone in the Tone channel; the initiating
transceiver simply monitors for the existence the tone. In parallel, each node performs a certain
operation (which may be a simple check to determine that no action is needed) and, once com-
pleted, removes its tone from the Tone channel. Once the initiating transceiver notices that there is
no tone in the channel, it knows that all nodes have completed their task.

Effectively, ToneAck enables a fast global acknowledgment operation. We have used ToneAck
in Section 4.3.2 to perform a global transition from Shared to Wireless state. A similar support
has been proposed by TLSync [141] and WiSync [45] for efficient core synchronization. However,
this is the first time that this idea is used as part of the transactions of a cache coherence protocol.

4.3.4 Summary: Why Adding Wireless Support To Coherence

Adding support for wireless communication in a large manycore provides the ability to perform
several types of coherence transactions very efficiently, especially those involving multicasting.
While the bandwidth of a wireless network is limited, the latency of any given transaction is very
small. These properties perfectly fit the sharing pattern considered in this work: groups of cores
frequently reading and writing a shared location. Read and write operations do not need the com-
plicated multi-hop protocol transactions required by invalidation-based protocols, or the lengthy
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routing of messages required by invalidation- or update-based protocols in wired NoCs. Instead,
writes transfer a fine-grained update (rather than a cache line) with about 5ns [45], and reads are
local.

4.4 DETAILED DESIGN

4.4.1 Protocol Description

Figures 4.3a and 4.3b show the diagram of all possible transitions between stable states of WiDir

in the controller of the private caches, and directory, respectively. The transitions are annotated
with descriptive labels. As seen in the figures, we have the four MESI states plus the wireless (W)
state.

(a) L1 cache controller. (b) Directory controller.

Figure 4.3: Transitions between stable states of WiDir in the controllers of the private caches (a),
and directories (b). In the figures, black lines are core-initiated transactions; red dashed lines are
directory-initiated transactions; and the blue text is the added wireless coherence transitions.

Rather than describing the complete protocol in detail, we focus only on the transitions that
come from W or go to W. Tables 4.1 and 4.2 describe such transitions for the controllers of the
private caches and directories, respectively. Each row considers one transition and describes when
the transition happens and the action taken.
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Table 4.1: State transitions that come from W or go to W for the controller of the private cache.

Trans. When? Action
I → W Core issues GetS to directory and

directory is in W
Cache receives a WirUpgr+line via wired, sends
WirUpgrAck back to directory via wired, and transi-
tions to W

Core issues GetX to directory (in-
dicating that it is not a sharer) and
directory is in W

Cache receives a WirUpgr+line via wired, sends
WirUpgrAck back to directory via wired, and transi-
tions to W. The cache issues the update wirelessly

Core issues GetS to directory trig-
gering a directory transition to W

Transceiver receives a BrWirUpgr via wireless, and
sets the tone channel on. When the cache receives a
WirUpgr+line via wired, it transitions to W and noti-
fies the transceiver to turn off the tone channel

Core issues GetX to directory (indi-
cating that it is not a sharer) trigger-
ing a directory transition to W

Transceiver receives a BrWirUpgr via wireless, and
sets the tone channel on. When the cache receives a
WirUpgr+line via wired, it transitions to W and noti-
fies the transceiver to turn off the tone channel. The
cache issues the update wirelessly

S→ W Transceiver receives a BrWirUpgr
from the directory via wireless be-
cause the latter transitions to W

Transceiver turns on the tone channel, the cache tran-
sitions to W, and the transceiver turns off tone channel

Core issues GetX to directory (in-
dicating that it is already a sharer)
and, by the time it gets to the direc-
tory, the latter has transitioned to W

Transceiver receives a BrWirUpgr via wireless, and
turns on the tone channel. The cache transitions to W
and the transceiver turns off the tone channel. Finally,
the cache issues the update wirelessly

W → W Core reads Clear UpdateCount
Core writes Transceiver broadcasts the updated word (WirUpd)

via wireless. When the transceiver indicates that the
broadcast succeeded, the local cache is updated and
UpdateCount is cleared

W → S Cache receives a WirDwgr from
the directory via wireless be-
cause SharerCount decreased to
MaxWiredSharers

Cache sends WirDwgrAck (including core ID) to di-
rectory via wired, and changes the state to S

W → I Local cache evicts W line Cache notifies the directory with PutW via wired
Cache receives a WirInv via wire-
less from the directory because the
directory wants to evict the line

Cache invalidates the line and, if the core has a pend-
ing write on the line, it squashes it and retries it

Private Cache Controller (Table 4.1). There are four cases of I→W transitions. The first two
are when the directory is in W and the core issues a GetS or GetX (indicating that the core is
not a sharer) to the directory. In this case, the cache receives, via the wired network, a wireless
upgrade message (WirUpgr) plus the line from the directory, and sends back a wireless upgrade
acknowledgment (WirUpgrAck) to the directory via the wired network. The cache line transitions
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Table 4.2: State transitions that come from W or go to W for the directory controller.

Trans. When? Action
S→ W Directory receives a GetS or GetX

from a non-sharer cache via wired,
and new number of sharers is
higher than MaxWiredSharers

Directory broadcasts BrWirUpgr via wireless, turns
on jamming on the line, and sends WirUpgr+line
to the requester via wired. Once the tone channel
is silent, directory sets the Wireless bit, sets Shar-
erCount, sets state to W, and turns off jamming

W → W Directory receives from a cache via
wired a GetS or GetX (indicating
that is not a sharer)

Directory turns on jamming, and sends WirUpgr+line
via wired to the requester. Upon receiving its WirUp-
grAck via wired, increase SharerCount and turns off
jamming

Directory receives a GetX from a
cache via wired (indicating that it
already is sharer) not knowing the
directory is in W

Directory discards message since a previously sent Br-
WirUpgr via wireless already resolved the conflict.

W → S Directory receives a PutW via
wired. The SharerCount is
decreased and now becomes
MaxWiredSharers

Directory broadcasts WirDwgr wirelessly and waits
for WirDwgrAck acknowledgments via wired. Upon
receiving all MaxWiredSharers WirDwgrAcks, the di-
rectory records their core IDs in the sharer pointers,
resets the Wireless bit, writes the line to memory if it
is dirty in the LLC, and sets the state to S

W → I Directory evicts a line shared wire-
lessly

Directory broadcasts a WirInv via wireless. If the line
is dirty in the LLC, the line is written to memory

to W. If the request was a GetX, the cache now issues the update wirelessly.
The other two cases are when the core issues a GetS or GetX (again, indicating that the core

is not a sharer) to the directory that triggers a directory transition to W. In this case, the local
transceiver receives a broadcast wireless upgrade message (BrWirUpgr) via the wireless network,
and turns on the tone channel. Then, when the cache receives, via the wired network, a WirUpgr

plus the line from the directory, it transitions to W and tells the transceiver to turn off the tone
channel. If the request was a GetX, the cache issues the update wirelessly.

There are two cases of S→W transitions. The first one is when the transceiver receives a Br-

WirUpgr message via wireless from the directory because the latter transitions to W. In this case,
the transceiver turns on the tone channel, the cache transitions to W, and the transceiver turns off
the tone channel.

The second case is when the core issues a GetX to the directory (indicating that it is already a
sharer) and, by the time it gets to the directory, the latter has transitioned to W. In this case, the
transceiver receives a BrWirUpgr via wireless, and turns on the tone channel. The cache transitions
to W and the transceiver turns off the tone channel. Finally, the cache issues the update wirelessly.

There are two cases of W→W transitions. The first one is when the core reads; in this case, the
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hardware reads from the cache and clears the UpdateCount for the line. The second case is when
the core writes. In this case, the transceiver broadcasts the updated word (WirUpd) via the wireless
data network. When the transceiver indicates that the broadcast has succeeded, the local cache is
also updated. The UpdateCount for the line in the cache is cleared.

There is one case W→S transition. It is when the cache receives a wireless downgrade message
(WirDwgr) from the directory via wireless because SharerCount decreased to MaxWiredSharers.
In this case, the cache controller sends a wireless downgrade acknowledgment message (WirDw-

grAck) that includes the core ID to the directory via the wired network. The line state is changed
to S.

There are two cases of W→I transitions. The first is when the local cache evicts a line in W
state. In this case, the cache controller informs the directory by sending it a PutW message via the
wired network. The second case is when the local cache receives a wireless invalidate message
(WirInv) for line from the directory via wireless because the directory is evicting the line. The
cache invalidates the line and, if the core has a pending write on the line, it squashes it and retries
it.

Directory Controller (Table 4.2). The transition S→W occurs when the directory receives a
GetS or GetX from a non-sharer node via the wired network, and the new number of sharers for
the line is now higher than MaxWiredSharers. In this case, the directory broadcasts a BrWirUpgr

via the wireless network, turns on jamming in the wireless data network for the line and, via the
wired network, sends WirUpgr plus the line to the requester node. Once the directory detects that
the tone channel is silent, it sets the Wireless bit, sets SharerCount to the count of sharers, sets the
state to W, and turns off jamming.

The transition W→W occurs in two cases. The first one is when the directory receives from
a cache via the wired network a GetS or GetX (indicating that the node not a sharer). In this
case, the directory turns on jamming and sends, via the wired network, a WirUpgr plus the line
to the requester. When the directory receives a WirUpgrAck via the wired network, it increases
SharerCount and turns off jamming.

The second case is when the directory receives a GetX from a cache via the wired network
indicating that the node is already a sharer, but not knowing that the directory is already in W.
In this case, the directory discards the message since a previously-sent BrWirUpgr via wireless
already resolved the conflict.

The W→S transition occurs when the directory receives a PutW message via the wired network,
as a result of a wireless sharer evicting the line from its cache. After the directory decrements
SharerCount, the latter becomes MaxWiredSharers. In this case, the directory broadcasts WirD-

wgr wirelessly, and waits for WirDwgrAck acknowledgments from MaxWiredSharers cores via the
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wired network. Upon receiving them, the directory records their core IDs in the sharer pointers,
resets the Wireless bit, writes the line back to memory if the Dirty bit in the LLC is set, and sets
the state to S.

The transition W→I occurs when the directory evicts a line shared wirelessly. In this case, the
directory broadcasts a WirInv message via the wireless network. If the Dirty bit in the LLC is set,
the line is written to memory.

4.4.2 Correct Operation of the Wireless Update Transactions

Writes that use the wireless network, like all other writes, are kept in a core’s write buffer until
they complete. The process of performing such a write involves multiple steps. The first one is for
the transceiver to obtain access to the wireless data network. The transceiver then has to succeed in
sending the message without collisions. Once the message is fully transmitted (i.e., 5 cycles from
the initiation), the transceiver signals the private cache controller to merge the write into the local
cache. Once the merging is done, the write is complete.

Before the transceiver gains access to the wireless network, the transceiver may receive updates
to the line from remote cores. In this case, such updates are performed before the local one. It is
also possible that the transceiver receives an invalidation for the line (WirInv) because the line’s
entry in the directory was evicted. In this case, the local cache line is invalidated and the local
write is squashed and retried. As the local write retries, it will trigger the directory to allocate a
new entry for the line.

The fact that the update has been successfully transmitted via the wireless data network does
not imply that the update has already updated the home directory or the remote caches. This is
because, in each destination node, the update has to be routed to the controllers for the private
cache and (in the home node) to the directory/LLC controller (Figure 4.1). Such routing takes
some delay. For the coherence protocol to be correct, we need to ensure that the update is not
overtaken by requests that are issued later. To ensure that this does not happen, WiDir has a single
queue for the private cache controller, and a single queue for the directory/LLC controller. Further,
messages are processed in strict FIFO order. Specifically, messages to the private cache controller
from the core, transceiver, router, and directory/LLC in Figure 4.1 all go to a single FIFO queue.
The same applies to the directory/LLC controller. Hence, as an incoming update is received by the
transceiver, it gets ordered in the queue where it goes to.
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Table 4.3: Architecture modeled. RT means round trip.

General Parameters
Architecture Manycore with 64 cores
Core Out of order, 4-issue wide, 1GHz, x86 ISA
ROB; ld/st queue 180 entries; 64 entries
Write buffer 64 entries
L1 I+D caches Private 64KB, WB (data), 2-way, 2-cycle RT, 64B lines
L2 cache Shared, per-core 512KB bank (32 MB total), WB
L2 bank 8-way, 12-cycle RT (local), 64B lines
On-chip network 2D-mesh, 1 cycle/hop, 128-bit links
Off-chip memory Connected to 4 memory controllers, 80-cycle RT

WiDir Parameters
Cache Coherence Enhances a Dir 3 B MESI directory protocol
Data Wireless channel 60GHz, 20Gb/s, 4 cyc. transfer + 1 cyc. collision detect.
Tone Wireless channel 90GHz, 1Gb/s, 1 cycle transfer latency
MaxWiredSharers 3 sharers/line
MAC Protocol BRS [140] (exponential backoff)
Transceiver At 65nm: 0.25mm2, 30mW [31, 77, 78]
Data converter At 65nm: 0.03mm2, 0.72mW [79]
Serializer/Deserializer At 65nm: 0.04mm2, 10.8mW [80]
Data+tone antennas At 65nm: 0.08mm2 [81]
All RF circuit in node At 65nm: Area: 0.4mm2, Transmitting: 39.4mW, Receiving: 39.4mW, Idle:

26.9mW (power gating analog amplifier, with transient energy of 1.14 pJ)

4.5 EVALUATION METHODOLOGY

We use the SST [142] simulation framework as a cycle-level, execution-driven simulator to
model a server architecture with 64 cores. The architecture parameters, as well as the energy and
area of the wireless components are shown in Table 4.3. Each processor tile is composed of an out-
of-order core with private L1 instruction and data caches. L2 is shared and physically distributed
across the processor tiles. For the NoC, we use a 2D-mesh topology with a latency of 1 cycle per
hop. We augment the simulator to model in detail the transmissions and collision handling required
by the wireless network. The data channel of the wireless network has a bandwidth of 20 Gb/s.
This is adequate to transmit a 64-bit word and its address in 4 cycles. Collision detection adds one
additional cycle.

We use McPAT [74] and CACTI [75] to model the energy consumed by cores and memory
hierarchy, as well as a calibrated DSENT [76] to model the energy of the wired links and routers.
To compute the power and area consumed by the wireless hardware (transceiver, data converter,
serializer, deserializer, and antennas), we use and adapt published data in 65 nm technology [31,
77, 78, 79, 80, 81, 143]. Because some of the components’ data were given only for 16 Gb/s, we
linearly scaled up their power and area to match our 20 Gb/s bit rate. The next step would be to
scale these numbers down to the 22 nm technology used for the rest of the system. The power
and area of the wireless components would be lower, as proposed by other researchers [83, 84].
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However, in this work we choose to be conservative and not scale them down. Finally, the energy
parameters of the wireless components in Table 4.3 also take into consideration the fact that the
transmitter’s power amplifier and the receiver’s low noise amplifier can be power gated when not
in use [31, 82].

Our evaluation assumes a highly reliable wireless technology. In the past, wireless on-chip links
encountered sizable error rates [21, 144, 145]. However, improvements in recent years (e.g., [119])
have enabled wireless on-chip links with error rates like those of on-chip wires (10−15), making
corrupted messages extremely infrequent. Note also that the rate of these noise-related errors can
be made arbitrarily low by increasing the signal strength.

To evaluate the efficacy of our design, we compare it to a Baseline manycore system that uses the
Dir3B MESI directory protocol without the wireless support of WiDir. We evaluate a wide range
of multi-threaded applications from SPLASH-3 [146] and PARSEC [71]. These applications are
listed and characterized by their L1 misses-per-kilo-instruction (MPKI) for Baseline in Table 4.4.
They have different levels of fine-grained data sharing, as well as different access patterns.

Table 4.4: Evaluated applications characterized by L1 MPKI in Baseline.

SPLASH-3 [146] PARSEC [71]
Name MPKI Name MPKI Name MPKI

water-spa 0.49 fft 5.05 blackscholes 0.13
water-nsq 2.86 lu-nc 21.52 bodytrack 7.51
ocean-nc 16.05 lu-c 1.9 canneal 23.21
volrend 2.44 radix 9.41 dedup 4.1
radiosity 5.28 barnes 9.53 fluidanimate 1.27
raytrace 10.05 fmm 1.88 ferret 6.34
cholesky 5.92 freqmine 8.84

For the SPLASH-3 applications, we use the default input sets as described in [146] and, for
PARSEC, we use the standard simsmall [71]. The input set sizes were chosen to allow running the
default region of interest of each application to completion within a realistic time frame of up to a
few days of simulation.

4.6 RESULTS

In this section, we analyze the data sharing, and then evaluate performance, energy, and area.
Finally, we perform a sensitivity analysis.

4.6.1 Data Sharing Analysis

Figure 4.4 considers only the wireless updates in WiDir, and shows a histogram of the number
of sharers that are updated per write. We group the number of sharers in bins: up to 5, 6-10, 11-25,

52



26-49, and 50 or more. The figure shows that, for many applications, a wireless write updates
many caches. For other applications, only a few caches are typically updated. On average, we see
that updates with few sharers (up to 5) account for 36% of these writes. On the other hand, updates
with many sharers (50+) account for 37% of these writes. The latter typically correspond to highly-
shared variables, such as locks and barriers. This category is the one that offers the highest benefit
from the wireless mode.
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Figure 4.4: Number of sharers updated upon a wireless write in WiDir.

Note that the detection of lines with many sharers does not require any user effort. The hardware
automatically identifies them and switches them to wireless mode.

4.6.2 Performance Analysis

Cache Misses. Figure 4.5 shows the L1 misses per kilo instruction (MPKI) in WiDir and Baseline,
normalized to Baseline. The figure is broken down into read and write misses. We can see that,
on average, the MPKI is reduced by 15%. The misses eliminated are coherence misses. WiDir

removes them by virtue of updating the sharers of a wireless line upon a write, as opposed to
invalidating them.

The reduction in MPKI is especially large in radiosity. For this application, Figure 4.4 showed
that over 90% of the wireless writes in WiDir update 50+ sharers. Updating so many sharers, as
opposed to invalidating them, achieves a large reduction in MPKI. Other applications that see a
sizable reduction in MPKI are water-spa, ocean-nc, barnes, and fmm. Most of these applications
have a large average number of wireless sharers updated per write (Figure 4.4). However, the two
figures are not perfectly correlated because there are also misses to non-wireless lines.
Memory Latency. Figure 4.6 shows the overall latency of memory operations in WiDir and Base-

line, normalized to Baseline. This latency is computed by counting, for a each request, the number
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Figure 4.5: Misses-per-kilo-instruction in WiDir and Baseline, normalized to Baseline.

of cycles from the time the request enters the ROB until it retires from the ROB, and then adding
over all the loads and over all the stores. The figure is broken down into loads and stores. Note that
this computation does not take into account the fact that some accesses stall the ROB while others
are simply overlapped with the former. However, it gives some insight into the relative importance
of memory cycles in the two architectures.
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Figure 4.6: Overall latency of memory operations in WiDir and Baseline, normalized to Baseline.

We see that WiDir reduces the total latency of memory access in nearly all of the applications.
Moreover, the reductions are similar in both loads and stores. Some applications such as ocean-

nc, raytrace, fft, lu-c, and fmm have large latency reductions. These applications are likely to be
sped-up significantly by WiDir. Overall, on average, WiDir reduces the total latency of memory
accesses by 35% over Baseline.
Wired Network Hops. In a conventional wired protocol, read and write miss transactions often
require multiple coherence hops (or legs), as the directory forwards messages to other sharers.
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In a large chip, such as the 64-core manycore that we are considering, each of these legs of a
coherence transaction ends up incurring a high cost due to the large number of network hops that
each message has to go through in the wired mesh.

To assess this cost, we count, for each leg of a coherence transaction in Baseline, the number of
network hops that the message has to go through. Table 4.5 shows the fraction of messages in our
applications that need a certain number of network hops in a leg. We group the number of hops in
bins of 0-2, 3-5, 6-8, 9-11, and 12-16 hops. We can see that more than half of all the messages in
the baseline have to perform at least 6 network hops per leg to reach their destination. In contrast,
in WiDir, writes to wireless lines are broadcasted to all sharers in a single hop. This capability
reduces memory and communication latency.

Table 4.5: Distribution of number of network hops per leg for messages sent through the wired
mesh, in the 64-core Baseline architecture.

Number of Hops per Leg 0-2 3-5 6-8 9-11 12-16
% of Messages 17% 22% 31% 21% 9%

Execution Time. Figure 4.7 presents the execution time of the applications in WiDir and Baseline,
normalized to Baseline. From top to bottom, the graphs show runs for 64 cores (a), 32 cores (b),
and 16 cores (c). Each bar is broken down into cycles when the execution is stalled due to a
pending memory access (Memory stall) and the rest of cycles (Rest).

Consider first the 64-core runs (Figure 4.7a). We can see that, in Baseline, many of the cycles
are wasted to memory stall. On average, nearly 65% of the cycles fall into this category. With
WiDir, many applications reduce their execution time, sometimes substantially. Such reductions
are caused by decreases in the memory stall cycles. The Rest cycles change only a little, although
sometimes they go up noticeably. The reason for the change is that the timing of the instructions
changes between WiDir and Baseline. On average, WiDir manages to reduce over one third of the
memory stall time. As a result, on average, the total execution time of the applications reduces by
22%.

Generally, the applications that benefit the most from WiDir have some of the highest percent-
ages of memory stall cycles in Baseline. They include ocean-nc, radiosity, raytrace, and barnes.
Wireless transactions directly reduce the number of misses and, hence, the memory stall time.
However, there are also applications where WiDir has practically no impact. They include blacksc-

holes, bodytrack, dedup, ferret, and freqmine.
As we decrease the number of cores in the architecture, the speed-ups decrease. Specifically,

for 32 cores (Figure 4.7b) and 16 cores (Figure 4.7c), the average execution time reduction of the
applications is 11% and 4%, respectively. With fewer cores, the latency of the wired network is
smaller and, in addition, variables are shared by fewer cores.
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(a) 64 cores
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(b) 32 cores
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(c) 16 cores

Figure 4.7: Execution time in WiDir and Baseline, normalized to Baseline for 64 (a), 32 (b), and
16 (c) core executions. The bars are broken down into memory stall cycles and the rest of cycles.
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4.6.3 Energy and Area Analysis

Energy. Figure 4.8 shows the energy consumed by WiDir and Baseline, normalized to Baseline.
The energy is broken down into the energy of the core, the private L1s, the shared L2 plus directory,
the wired NoC, and the WNoC.
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Figure 4.8: Energy consumed by WiDir and Baseline, normalized to Baseline.

We see that Baseline spends on average about 60% of the energy in the core, 5% in the instruc-
tion and data L1 caches, 20% in the shared L2 and directory, and 15% in the wired NoC. In WiDir,
we have the same categories plus the energy contribution of the WNoC.

The WNoC and coherence protocol of WiDir reduce the cost of polling operations and long
distance communications. Therefore, they reduce the energy consumption. On average, the energy
consumed by WiDir is 21% lower than in Baseline. Across applications, the energy reductions are
very similar to the execution time reductions (Figure 4.7a). In addition, we can see that the energy
contribution of the WNoC is modest: on average, it is 5.9% of the WiDir energy.

Finally, since the energy reduction of WiDir is roughly similar to the execution time reduction,
we conclude that the power consumed by Baseline and WiDir are very similar.
Area. Table 4.3 showed that an estimate of the area overhead of the transceiver, data converter,
serializer, deserializer, and antennas at 65nm technology is 0.4 mm2. Several authors [83, 84] argue
that the area reduces linearly with the feature size. Consequently, we expect that, for a current
technology like 10 nm or lower, the area overhead of the wireless network support is modest.

4.6.4 Speedup and Sensitivity Analysis

As the number of cores in the manycore increases, so does the overhead of traditional coherence
protocols, as well as the cost of traversing the wired mesh. With WiDir, the added wireless coher-
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Figure 4.9: Average execution time speedup of WiDir and Baseline over the 4-core Baseline.

ence protocol reduces the overhead of the cache lines that are highly shared and would suffer the
most. The result is a better scalability of WiDir with the number of cores than Baseline.

Figure 4.9 shows the execution speedup of WiDir and Baseline as the number of cores increases.
The speedups are computed relative to the execution time of Baseline with four cores. From the
figure, we can see that, up to 16 cores, the difference in speedup between WiDir and Baseline is
small. This is because the cost of traversing the wired network is small, and the number of cores
sharing a cache line is typically modest. As a result, WiDir cannot provide much benefit. However,
as the size of the chip increases to 32 and 64 cores, WiDir benefits from having more cache lines
in wireless mode, while Baseline is harmed by the increased cost of traversing the wired network.
Thus, the average speedups of WiDir and Baseline diverge. Hence, WiDir is more scalable.

Table 4.6: Speedups of WiDir over Baseline, and collision probability in WiDir, for different values
of MaxWiredSharers.

Max Wired Sharers Sp. Coll. prob.

2 1.22x 6.93%
3 1.43x 3.14%
4 1.38x 2.24%
5 1.31x 1.70%

We now consider the effect of the threshold for the number of cores that need to be sharing a line,
for the line to switch to wireless (MaxWiredSharers). Recall that the default value of MaxWired-

Sharers is 3. In this section, we change its value to 2, 4, and 5.
For the different values of MaxWiredSharers, Table 4.6 shows two measures: (i) the average

execution time speedup of WiDir over Baseline for 64-core runs (Sp.), and (ii) the probability of
collisions of messages in the wireless network in WiDir (Coll. prob.). The values for MaxWired-

Sharers equal to 3 are 1.43x and 3.14%, respectively.
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When we switch to wireless mode sooner (i.e., MaxWiredSharers equal to 2), more lines are in
wireless mode. This increases contention and collisions in the wireless medium (from 3.14% to
6.93%), and in turn hurts speedups (from 1.43x to 1.22x) compared to the default MaxWiredSharers

value of 3. It can be shown, however, that some applications such as lu-nc, fmm, and canneal

actually attain higher speedups when switching to wireless mode sooner.
When we increase the threshold to switch to wireless later (MaxWiredSharers equal to 4 and 5),

fewer lines are in wireless mode. Hence, we reduce the amount of traffic in the wireless medium,
which in turn decreases the probability of wireless collisions (from 3.14% to 2.24% and 1.70%).
However, the result is reduced speedups (from 1.43x to 1.38x and 1.31x), due to missing oppor-
tunities to use the wireless medium. No application attains a higher speedup with these higher
MaxWiredSharers values.

Overall, our default MaxWiredSharers value of 3 works best.

4.7 RELATED WORK

Wireless Architectures. We described WiSync [45], Choi et al. [132], Mondal et al. [47], and
Replica [46] in Section 4.2. Other works use a WNoC to accelerate the communication patterns
of applications such as graph analytics [63], molecular dynamics simulations [147], and brain-
machine interfaces [148]. These other works differ from WiDir in that the wireless links are used
to reduce the average network latency regardless of the coherence state. Further, the network is
optimized for a particular set of applications only.

There are many proposals for Medium Access Control (MAC) protocols for WNoCs [115, 121,
149, 150]. WiDir has used BRS, but practically any other WNoC MAC protocol could be used as
well.
Snooping-based Protocols. WiDir’s wireless network provides a totally-ordered interconnect and
efficient broadcasting to satisfy misses with low latency. Snooping protocols [127, 136] also use a
totally-ordered interconnect. Several works extend snooping coherence to unordered interconnects
to improve its scalability [151, 152, 153, 154, 155, 156, 157]. The idea is to provide ordering
guarantees, either at the protocol level via tokens associated to each cache line [152] or at the
network level using global timestamps [151], snoop-order numbers [154], a logical embedded-ring
[153], or a dedicated ordering network [155, 156, 157]. Depending on the protocol, the scalability
is fundamentally limited by the increasing ordering buffer requirements, latency of serialization,
or inefficiency of filling a mesh NoC with broadcasts.
Protocols with Emerging Interconnect Technologies. Optical/RF transmissions via shared nanopho-
tonic waveguides [18, 59, 158, 159, 160] or transmission lines (TLs) [141, 161, 162, 163, 164, 165]
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can provide ordered broadcast. Some proposals use these global interconnects to implement con-
ventional snooping coherence [59], custom limited directory protocols [159], race-free protocols
via globally shared locks [158], or to speed-up synchronization [141, 166]. Compared to wireless
networks, both nanophotonics and TLs are more energy efficient and provide higher bandwidth
because of their guided nature. However, network design becomes more complex than wireless
because a maze of physical waveguides/TLs needs be planned and laid down. Both technologies
also have scalability issues in globally-shared networks. In nanophotonics, there are losses added
by each and every power divider, modulator, coupler, and receiver along the path. In TLs, there is
the need of a centralized arbiter for the bus, and of overcoming signal reflections with amplifying
stages between segments, which are costly and complicate the design.
Scalable Directory Protocols. We outlined a variety of protocols with scalable directories [129,
130, 135] in Section 4.2. Another way to scale the directory is by dividing the manycore into
coherence domains [167], where only the nodes in the same domain are kept coherent with each
other. WiDir, instead, not only allows the directory to scale without domain restrictions, but also
boosts performance by enabling broadcast updates of highly-shared lines.

4.8 CONCLUSION

To handle sharing patterns where a group of cores frequently reads and writes a set of shared
variables, this work used on-chip wireless network technology to augment a conventional invalidation-
based directory cache coherence protocol. The resulting protocol, called WiDir, seamlessly transi-
tions between wired and wireless coherence transactions for the same line based on the program’s
access patterns in a programmer-transparent manner. In this work, we described the protocol in
detail. Further, an evaluation showed that WiDir substantially reduces the memory stall time of
applications. For 64-core runs, WiDir reduced the execution time of applications by an average
of 22% compared to MESI. Moreover, WiDir was shown to be more scalable than MESI. These
benefits were obtained with a very modest power cost.
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CHAPTER 5: WIPACKAGE: WIRELESS-ENABLED COLLECTIVE
COMMUNICATION IN A MANY-CHIPLET PACKAGE

5.1 INTRODUCTION

Over the last few years, we have observed the slowdown in the rate of transition from one tech-
nology node to the next, due to fundamental physical limitations. As a consequence of that, the
costs of manufacturing new silicon wafers are sky-rocketing. Therefore, modern high-performance
computing (HPC) processors partition large multi-core designs into smaller chiplets (Figure 5.1)
that deliver better yield and lower the production cost [168, 169]. Individual chiplets can be
tested separately and then reassembled using any of the different packaging technologies avail-
able, such as multi-chip modules (MCMs) [169, 170], 2.5D integration over a silicon interposer
[168, 171, 172, 173], or silicon bridges [174, 175]. For example, AMD’s EPYC 7742 proces-
sor [109] uses an 8-chiplet MCM organization and 7 nm technology to support up to 64 cores
interconnected through its Infinity Architecture technology [176]. As another example, NVIDIA’s
Simba prototype [177] consists of a 36-chiplet MCM system for deep-learning inference, fabri-
cated in 16 nm FinFET process technology, and connected through a 2D mesh network, totaling
576 processing elements (PEs). Further, Intel has already made public a detailed description of its
upcoming Ponte Vecchio Xe-HPC GPGPU for supercomputers [178], which will use a variety of
process technologies centered around 7 nm, and a disaggregated modular architecture consisting
of 47 tiles, joined together by its proprietary Embedded Multi-Die Interconnect Bridge (EMIB)
technology [175]. In the near future, it is likely that disintegration and chiplet counts will continue
to increase.

For these manycores, shared memory is currently the most popular programming and execu-
tion model, due to its ease of programming, well-developed existing algorithms, and widespread
libraries such as POSIX threads and OpenMP. To support shared memory at this scale, designers
use directory-based cache-coherent systems [127]. However, as the number of cores per pack-
age increases, engineering massive scale directory-based cache-coherent systems that deliver high
performance without an inordinate increase in complexity and cost will present challenging; the
main reasons being the poor scaling of the directory storage, and most importantly the commu-
nication latency. While there have been many attempts to design scalable directories for many-
cores [128, 129, 130, 133, 134, 135, 179], these have all been devised for monolithic architectures,
and rely on the basic premise that all cores and directory slices are on the same chip, and that
network-on-chip (NoC) latencies between cores and directory slices are relatively low. This basic
premise no longer holds in the chiplet scenario, since manycores are fragmented into different dies,
and chiplet-to-chiplet latencies are twice as large as on-chip [177].
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Therefore, while the chiplet paradigm comes with great advantages in yield and heterogeneity,
its large chiplet-to-chiplet latencies leads us to rethink the way manycore chips will be programmed
in the near future, and how to address the problem of the coherence wall by introducing ideas from
supercomputing into the chiplet-based manycore scenario.

On-chip wireless communication is a new technology that has recently sparked a lot of inter-
est [34, 35, 36, 37, 38, 39, 40, 41, 46, 179]. While most of these designs have focused on mono-
lithic architectures, researchers are already extending this technology to the novel chiplet-based
systems, leading to the concept of Wireless Networks-on-Package (WNoPs) [180]. In WNoPs,
each chiplet in a manycore package has a transceiver and an antenna, which it uses to commu-
nicate wirelessly with other chiplets. Thanks to completely integrated on-chip antennas [30] and
transceivers [181, 182], short-range wireless communication up to 100 Gb/s with small resource
overheads has recently become viable. Because a wireless message can cross a large package in
around 5 ns [181], a WNoP enables low-latency transfers, even though its bandwidth is limited
(just one or a few messages can be transmitted at a time). WNoPs also allow multicasts and broad-
casts by nature. As a result, WNoPs have been proposed as a way to speed up parallel applications.
WiSync [45] uses it to speed up synchronization, Choi et al [132] uses it to speed up CNN training
in CPU-GPU heterogeneous architectures, WIENNA [180] uses it to connect an array of DNN
accelerator chiplets to the global buffer chiplet, and WiDir[179] uses it to augment a conventional
invalidation-based directory cache coherence protocol.

An intriguing question is whether a chiplet-based architecture can be augmented to use a wire-
less network so that common supercomputer parallel programming models can be supported ef-
ficiently. Parallel programming models on supercomputers include: (1) pure message passing,
which consists of one MPI process running on each core; (2) hybrid shared memory and mes-
sage passing, which can be achieved with the standard MPI for inter-node communication, and
with either OpenMP or the novel MPI-3.0 for shared memory intra-node communication; and (3)
OpenMP only, which is effectively a distributed virtual shared memory.

Several message-passing collective primitives, such as MPI’s Barrier, Bcast, Scatter, Gather,

Allgather, Reduce, and Allreduce, can be efficiently supported by a WNoP: node to node com-
munication (or, in our case, chiplet-to-chiplet) can take place wirelessly without the high latency
associated with multi-hop chiplet transactions. To implement these MPI primitives thoroughly,
however, one must carefully integrate wired and wireless operations in a seamless manner.

In this work we present the WiPackage architecture. WiPackage augments each chiplet with a
multi-channel wireless transceiver, and extends an MPI implementation with some wireless trans-
actions. This enables the use of wireless channels to send and receive data across chiplets, by-
passing the high-latency multi-hop transactions of the wired network-on-package. We refer to
the concept of combining message passing with shared memory in a single package, where each
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chiplet is effectively a node, as a supercomputer on a package.
Contributions. The contributions of this work include: (1) the WiPackage architecture; (2)

a dynamic usage of multiple wireless channels; (3) an adaptive wireless ring scheme for n-to-

1 communication; (4) a chiplet-based implementation and analysis of common message-passing
collective primitives for WiPackage; (5) an evaluation of the primitives for WiPackage, and their
impact in the overall performance of the studied applications.

5.2 BACKGROUND & MOTIVATION

5.2.1 Chiplet-Based Systems

When compared to a 250 mm2 die on a 45 nm process, the 16 nm process approximately doubles
the cost per yielded mm, and the 7 nm process nearly quadruples it [169]. The cost of moving to
5 nm and even 3 nm nodes is projected to rise even farther. Fabricating huge monolithic dies
is becoming more and more expensive. Chiplet-based architectures, in which a single chip is
divided into numerous smaller and interconnected chiplets (Figure 5.1), is one option for easing
the manufacturing costs of large semiconductors.

Figure 5.1: An example of a chiplet-based disintegrated design.

5.2.2 Chiplet Interconnect Technologies

Chiplet-based architectures require a fast and efficient chiplet-to-chiplet interconnect to enable
data sharing and synchronization across the system. As we describe next and show in Figure 5.2,
several wired alternatives enable this approach.

The traditional approach to interconnecting multiple chips within the same package is the Multi-
Chip Module (MCM, Figure 5.2a) [109, 170, 176, 184]. MCMs rely on the integration and inter-
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(a) Multi-Chip Package (b) Silicon Interposer (c) Silicon Bridge (d) Wireless-Augmented
Multi-Chip Package

Figure 5.2: Chiplet-to-chiplet interconnection technologies, according to Intel [183] (a, b, c) and
Guirado et al. [180] (d).

connection of chiplets directly on top of organic package substrate. This option offers large room
for accommodating chiplets, e.g. beyond 70×70 mm2 [170] yet at a relatively coarse I/O bump
pitch over 100 µm [184]. To make up for the large pin sizes, ground-referenced signaling (GRS)
serial links at multiple tens of Gb/s are implemented instead of more traditional parallel links.
This, however, increases the hop latency up to a few tens of nanoseconds [177] and discourages
the use of long links across the package. The scalability of the solution is thus limited by latency
problems.

An alternative technology is the silicon interposer, which is effectively a large chip upon which

other smaller dies can be stacked as shown in Figure 5.2b [168]. This allows to interconnect
chiplets at a much greater density (i.e. around an order of magnitude greater) than in the classical
MCM [168, 185, 186], which enables the implementation of low-latency parallel links. However,
this comes at the expense of a high manufacturing cost. To be affordable, the interposer size needs
to be generally limited far below the recent 1700-mm2 demonstration by TSMC [187]. Moreover,
the connectivity is still limited by the amount of pins, which discourages the implementation of
high-radix topologies. Instead, the pins are used to increase the bandwidth of parallel links in a
mesh topology. Therefore, cost and latency are limiting the scalability of this approach.

A third alternative recently promoted by Intel is the Embedded Multi-die Interconnect Bridge
(EMIB, Figure 5.2c) [175, 178, 188]. The solution consists in integrating very small silicon dies
or bridges within the package substrate, to which chiplets can be connected at a fine granularity.
These bridges are strategically located at the edge of chiplets, allowing two adjacent chiplets to
be interconnected with high bandwidth and low latency. As a result, EMIB offers the speed of an
interposer without its size constraints. However, the connectivity is clearly limited to neighboring
chiplets: in systems with large chiplet counts, certain data communication patterns will require
many hops to complete.

In all these cases where only contiguous chiplets are interconnected for various reasons, the
high latency associated with inter-chiplet communication renders multi-hop coherence transac-
tions across chiplets extremely costly, decreasing performance and jeopardizing the scaling of the
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system.
In this context, wireless technology represents an opportunity to greatly alleviate the issues of

existing chiplet interconnects. As shown in Figure 5.2d, communication happens through elec-
tromagnetic waves are radiated by antennas integrated within the chiplets. The waves propagate
within the package at the speed of light. That leads to system-wide low latency (comparable to that
of a single MCM hop) and inherently broadcast communication without any pin or cost-related size
constraints [44, 180, 189]. However, since the medium is shared, wireless technology can only of-
fer a moderate aggregate bandwidth of a few hundred Gb/s. Hence, this technology is expected to
complement a wired interconnect alternative.

5.2.3 Shared Memory and Cache Coherence in Manycores

Scalable cache coherence is attained through the use of directories [128, 129, 130, 133, 134,
135]. Directory cache coherence is widely used commercially, such as in Intel’s Core i7 sys-
tems. Proposed directory-based coherence schemes make different tradeoffs in meeting their cost
requirements (i.e., storage overhead, latency, and energy). Traditional schemes such as full-bit vec-
tor (or full-map) directories maintain sharer information accurately. However, full-map directories
are unsuitable for manycore designs, since directory overhead scales linearly with the number of
processors. For example, in a 64-core system with a 64-byte cache line, the directory overhead
is 12.5%, while in a 1024-core system, the overhead is 200%. To overcome the area inefficiency
of full-map directories, other techniques represent sharer sets inexactly. Examples of these tech-
niques include coarse-bit vector [190], limited pointer [129, 130], sparse [190], and tag-less [191]
directories. However, while these schemes substantially reduce the directory overhead when com-
pared to full-map directories, their inability to track sharers precisely introduces additional traffic
in the form of spurious invalidations, which in turn degrades performance significantly. Most im-
portantly, all these works have a common flaw that challenges their scalability when applied to
new chiplet-based manufacturing trends: they were designed for monolithic architectures, and rely
on uniform and low on-chip communication latencies.

However, current chiplet-based designs consist of low-radix and high-diameter topologies with
high average hop counts and tens of nanoseconds of latency between chiplets [169, 177]. There-
fore, even with a low numbers of chiplets, these designs exhibit significant variances in access
latency to different addresses [169]. Recent solutions seek to make memory accesses in chiplet-
based systems more uniform by implementing a central I/O die through which all memory traffic
is routed [169], however these are only temporary solutions, as the switching fabric on the I/O die
becomes then the bottleneck for performance and power.

Due to these latency overheads, inter-chiplet communication in general, but cache coherence
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traffic in particular (which commonly involves multi-hop coherence transactions), can now signif-
icantly reduce system performance and therefore limit scaling. Unfortunately, there has yet to be
discovered a cache coherence scheme that can efficiently scale to a large number of chiplets.

5.2.4 Message Passing and Hybrid Programming

The Message Passing Interface (MPI) continues to be the preferred programming model for high
performance computing systems [192]. In the message passing model, the programmer explicitly
orchestrates the data communication in a application using a set of communication primitives.

On large HPC systems, hybrid application programs using MPI and OpenMP have become
commonplace. In these setting MPI defines parallelism between processes (with separate address
spaces), and Pthreads or OpenMP provides shared memory parallelism. This mix of program-
ming models is primarily motivated by two factors: (1) memory footprint reduction in both the
application and the MPI library (e.g. communication buffers); and (2) improved performance, par-
ticularly at high core counts where the scalability of pure MPI applications starts to saturate. We
believe this model is well suited for the chiplet scenario. Therefore, in the same way that nowadays
node-to-node communication happens through message passing and off-chip interconnection net-
works such as InfiniBand, in the chiplet scenario we would have chiplet-to-chiplet communication
through the on-package network, and integrated within a single package.

5.2.5 Wireless Network-on-Package

Short-range wireless communication up to 100 Gb/s with affordable resource overheads has re-
cently become possible thanks to fully integrated on-chip antennas [30] and transceivers [181, 182].
Wireless Network-on-Package (WNoP) is one of the uses for this technology. In an WNoP, proces-
sor or memory chiplets are equipped with antennas and transceivers for communicating with other
chiplets, with the system package serving as the propagation medium. This in-package channel
is static and controlled, allowing for optimization. Timoneda et al. demonstrated that system-
wide attenuation below 30 dB is possible [119]. These numbers match Yu’s et al. 65 nm CMOS
30/60/90-GHz transceiver specifications: 48 Gb/s of aggregate bandwidth, 1.95 pJ/bit at 25 mm
distance with error rates under 10-12, and 0.8 mm2 of total area [181]. WNoP provides scalable
broadcast capabilities and low latency across the system by removing the requirement for wires
between transceivers. It is scalable since additional chiplets simply need a transceiver to partici-
pate in the communication, and not extra off-die wiring. Because there are no I/O pin limitations
the bandwidth is high, and the latency is low because transfers avoid intermediate hops. WNoP also
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enables dynamic topology changes using reconfigurable media access control or network protocols
[193], since receivers can determine whether or not to handle incoming transfers at run-time.

5.3 OVERVIEW OF WIPACKAGE

In this work, we envision a hierarchical memory and network design called WiPackage. On
the one hand, WiPackage is comprised of a set of chiplets, each operating as a separate shared-
memory domain, with its own separate wired on-chip network. On the other hand, WiPackage

provides a message-passing wireless-augmented interconnection network, aimed at sending data
across chiplets. The advantages of WiPackage’s hierarchical design are manifold:

1. The low core count of each chiplet ensures fast intra-chip wired communication (4 and 6
hops at most in an 8 and 16 core-per-chiplet scenario, respectively), and low contention to
its local directory.

2. The wireless links used to communicate across chiplets can be dynamically rearranged, as
opposed to the unscalable state-of-the-art designs that use static wired paths between each
pair of chips.

3. The inter-chiplet wireless-based communication is latency-independent from the distance
between the two chiplets, given that signals travel at the speed of light. This is not true for
the currently implemented wired paths.

4. Package-wide broadcast traffic, as generated by MPI primitives like MPI Barrier or MPI Bcast,
is inherently free, due to the natural broadcast capabilities of wireless. Alternatively, wired
paths require sending as many individual packets as receivers are in the communicator pool.

5. The irregular communication patterns of the multi-threaded shared memory portions of cer-
tain applications are best suited for a small-world wired mesh NoC, as we have in each
chiplet, since that allows the use of a single clock domain and single shared memory address
space, and enhances the performance of tightly collaborative threads.

6. The regular communication patterns of the message-passing portions of certain applications
open the possibility for wireless channel parallelism, so that different chiplets can commu-
nicate with each other concurrently, and speed up the data transfer.

5.4 WIPACKAGE ARCHITECTURE

Figure 5.3 illustrates the WiPackage architecture. In essence, WiPackage consists of an array of
chiplets surrounded by High Bandwidth Memory (HBM) modules, acting as node memory. At the
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same time, each chiplet contains an array of cores (with their corresponding private L1 caches),
a shared last-level cache (LLC) with its corresponding directory, a local memory that we use as a
mailbox for incoming and outgoing inter-chiplet messages, and a DRAM controller. Additionally,
each chiplet contains a network-on-package router and wireless transceiver, used for chiplet-to-
chiplet communication.

Figure 5.3: Overview of the WiPackage architecture.

WiPackage implements a two-level hierarchy. On the one hand, the array of chiplets and the
HBM-based node memory follow a 2.5D integration scheme, interconnected through a hybrid
wired/wireless network-on-package. Each chiplet has access to an independent section of the node
memory. On the other hand, each chiplet operates as a separate shared-memory domain, with its
own wired on-chip network. All cores within the same chiplet can access the same section of node
memory. Data exchanges between chiplets consist of explicit message passing transactions, and
are sent through the wired/wireless network-on-package.

Like in MemPod’s design [194], or in next-gen AMD Zen 4 EPYC Genoa and Intel Sapphire
Rapids Xeon CPUs, which are both expected to incorporate HBM Memory, in WiPackage we opt
for HBM modules instead of off-chip memory due to its performance and efficiency.

5.4.1 Multiple Wireless Channels

Previous wireless-enabled monolithic architectures required the placement of one transceiver
and antenna per core [45, 46, 179]. Because the floorplan of a monolithic chip is limited, these
designs were only able to use a single wireless data channel across the entire chip, as multiple chan-
nels require more complex transceivers and the use of multiple antennas. As we move to chiplet-
based architectures and we place wireless transceivers on a per-chiplet basis instead of per-core,
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the area available for these transceivers increases, and we are therefore able to use more complex
designs, with multiple wireless channels. Previous designs had already proved the feasibility of
antennas and transceivers capable of enabling multiple on-chip wireless channels [44, 181, 195].
However, due to area constraints, architects were not able to integrate them into full packages.
With the advent of the chiplet-based era, this is bound to change.

The WiPackage architecture integrates a 4-channel wireless transceiver per chiplet. This means
that at any time, each chiplet has the ability to send and receive data across up to 4 channels si-
multaneously. The entity in charge of granting and revoking access to the different channels is the
operating system (OS). Because the wireless channels are used for message passing communica-
tion across chiplets, and because each communication is associated with a communicator group,
the OS grants and revokes channel usage on a communicator basis (and therefore the chiplets in
which they are mapped). In turn, this enables simultaneous wireless transmissions on different
wireless channels from different communicator groups, either from the same or different applica-
tions.

Breaking down the entire wireless bandwidth into multiple disjoint channels enables frequency-
multiplexing the medium when multiple applications or communicator groups attempt to transmit
at the same time, while still allowing a single communicator to use the whole spectrum when no
one else needs it. Because the number of channels that each communicator group uses may vary
at runtime, the implementation of the MPI algorithms described later in Section 5.5 is channel-
independent, meaning that it does not rely on holding a certain amount of channels.

5.4.2 Barrier Mechanism With Tone Channel

WiPackage provides an additional wireless channel, called the Tone channel, as a scalable solu-
tion to the synchronization mechanism of barriers, and to reduce contention on the data channels.
We apply TLSync [91] and WiSync’s [45] ideas for shared-memory monolithic on-chip transmis-
sion lines and wireless, respectively, to our message-passing chiplet-based architecture. Chiplets
transmit a tone rather than data on the Tone channel. The first master core to reach the barrier
sends a certain message across any of its assigned data channels. Upon receiving this message, the
transceivers of all other chiplets start transmitting a continuous tone in the Tone channel. As soon
as all processes of a chiplet reach the barrier, the master core orders its local transceiver to stop
sending the tone. As the tone fades away, we know all processes in all chiplets have reached the
barrier.

Since at any given time there may be multiple active barriers pertaining to different applications
or communicator groups, WiPackage supports multiple barriers through a single Tone channel by
time-multiplexing it. The channel is divided in 1-ns slots and, similar to in WiSync [45], two tables
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in each transceiver monitor which barriers are allocated across the system and which are active in
each chiplet. To allow controlling the tone channel at 1-ns granularity, the associated transceiver
needs to operate at 1 Gb/s only. This hugely simplifies the tone channel transceiver and reduces its
power consumption to a few mW [45].

To address the long latency overhead associated with inter-chiplet communication, in Section
5.5.1 we used the Tone channel as part of the WiPackage implementation for the MPI barrier.

5.4.3 Adaptive Wireless Ring

While the traditional 1-to-n wireless communication pattern can be trivially implemented (one
node broadcasts a message, all others listen), the inverse n-to-1 pattern requires an efficient or-
chestration of each transmission, in order to avoid bottlenecks in the shared medium. Previous
designs have used random access techniques [140] that allow nodes to attempt transmitting at any
time they sense the medium is free, and retry upon detecting a collision. While these techniques
work well when contention is low, they suffer from long tail latencies when many nodes attempt
to transmit at the same time. In the latter scenario, a time-division multiplexing technique such as
token ring provides better guarantees, since each node is granted exclusive access to the medium
once per round, in a round-robin fashion.

However, one drawback of token ring is the number of wasted slots when nodes are idle, since
no one else is allowed to transmit instead. To overcome this limitation, in WiPackage we propose
an adaptive wireless ring scheme, which allows the token to skip nodes that have already finished
their transmission, so that the pending ones can finish sooner. Effectively, this acts as a resizable
ring, where as time progresses, the number of nodes in the ring decreases, and therefore the num-
ber of time slots as well. Since in wireless the token is passed implicitly (all nodes can hear all
broadcast transmissions, and therefore all nodes are synchronized), this technique does not require
any explicit exchange of information. Also, this technique would otherwise not be possible in
wired networks, since links are static and predefined at manufacturing time, and nodes cannot hear
whether other nodes have used their time-slot to transmit. The feasibility of this technique only
applies to wireless networks where all nodes can listen to each other.

Figure 5.4 shows a walkthrough example of the adaptive ring. Initially, in Step (a), nodes 2, 3,
and 7 have already transmitted their data and are therefore out of the ring. Also, node 0 holds the
token, however since it has no data ready to transmit, the slot is left unused and the token passes
to node 1. Next, in Step (b), node 1 holds the token, and since it has data ready to send it transmits
right away. Because nodes 2 and 3 had previously already finished, the token is now implicitly
passed to node 4. In Step (c), node 4 holds the token but has no data to transmit, so the time slot is
wasted and the token passes to 5. Finally, in Step (d), node 5 uses its assigned time slot to transmit
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its data, and then implicitly pass the token to node 6.
We have used the adaptive ring technique in Sections 5.5.4 and 5.5.5 as part of the WiPackage

implementation for the gather and reduce collective primitives, to collect the data from the multiple
chiplets to the root.

Figure 5.4: Example of the adaptive ring used in WiPackage

5.5 COLLECTIVE PRIMITIVES IN WIPACKAGE

Collective communication is a mode of communication in which all processes in an MPI com-
municator participate. Although message passing collectives can be performed as send/receive
operations, they usually consist of an entirely different, efficient implementation. This section
describes a chiplet-based implementation for both Baseline and WiPackage architectures, of the
most commonly used MPI collective operations: Barrier, Broadcast, Scatter, Gather, and Reduce.
They are key building blocks of other operations, such as Allgather, Allreduce, and Alltoall. For
simplicity and illustrative purposes, all examples in this section use a 4-chiplet and 4-core/chiplet
setting, with all cores participating in the same primitive. The same ideas apply to higher scale-out
designs, as well as to multiple co-existing MPI communicator groups.

5.5.1 Barrier

A Barrier is a primitive for synchronization. Any process that calls it is blocked until the entire
group has called it as well. We choose to implement the MCS tree-based barrier algorithm [196],
as is also used in Open MPI. This algorithm assigns each rank to a tree node. Each tree node
contains an array of flags to track which of its children have reached the barrier. After a node and
all its children have reached the barrier (i.e. all flags in the node are set), this node then notifies its
parent. Leaf nodes start with their flag already set. Once the root node has reached the barrier and
its array of flags is all set (i.e. all ranks have reached the barrier), it notifies all its children so they
can proceed past the barrier.
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(a) Baseline

(b) WiPackage

Figure 5.5: Propagation of data in an MPI Barrier for both Baseline and WiPackage architec-
tures. Solid lines indicate wired communication, whereas dashed lines are wireless. Blue lines
refer to intra-chiplet traffic, and red lines to inter-chiplet. Root process is shaded in gray, and
master cores shaded in blue.

Baseline implementation. Figure 5.5a shows the propagation of data in the baseline chiplet-
based implementation of the MCS barrier algorithm, broken down into 4 phases. In phase 1 all
processes within each chiplet notify their barrier arrival to the master core of their chiplet (shaded
in blue). This communication takes place through the wired on-chip network (solid blue lines).
In phase 2, as each master core also reaches the barrier and finds its array of flags all set, it uses
the inter-chiplet on-package network to propagate their arrival information (solid red lines) to the
root (shaded in gray). Once the root has arrived to the barrier and received the message from all
its children, it follows the same procedure but in the opposite direction; that is, in phase 3 the
root sends a departure notification to all master cores in the other chiplets, and in phase 4 each
master core propagates the departure notification in its chiplet. All four phases are broken down
into multiple steps, potentially requiring multiple inter-/intra-chiplet hops.

WiPackage implementation. The WiPackage implementation of the barrier reuses the concept
of master cores and wired intra-chiplet arrival/departure notifications from the Baseline (Section
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5.5.1), but changes the way master cores communicate their arrival/departure to the barrier with
the root. Due to the chiplet nature of the architecture, the inter-chiplet communication between
the master cores and the root is actually the segment of the algorithm that suffers the highest
latency (see Section 5.2.2). To overcome high inter-chiplet latency, WiPackage leverages the tone
channel described in Section 5.4.2. As shown in Figure 5.5b, the master core of the first chiplet
that completes phase 1 (which is the same as in the baseline), broadcasts a message to all other
chiplets (phase 2.1) through the wireless network (dashed red line). This triggers the activation of
all other chiplets’ tone channel (phase 2.2). Then, in phase 3, as the master core of each chiplet
also arrives to the barrier with its array of flags all set to true, it turns off its tone channel and waits
until all others do the same (no energy in the tone channel). When that happens, in phase 4, the
master cores of each chiplet then propagates the departure message to all other cores of its chiplet
through the wired on-chip network.

5.5.2 Broadcast

The broadcast operation forwards data from one process to all other processes in the group.
Following MPICH, we implement the broadcast primitive with the binomial tree algorithm [197].
Using this algorithm, the root starts by transmitting all data in the buffer to its partner process
(root + p/2), where p is the total number of processors in the group. Then, both the root and
this partner process operate as new roots within their own sub-trees, continuing the algorithm in a
recursive and parallel manner. It takes dlog2pe steps for the data to reach the farthest process from
the root.

Baseline implementation. The chiplet-based implementation of this algorithm consists of 2
phases. In phase 1, the root sends the data to the master core of all other chiplets through the
wired on-package network. Notice that for the farthest chiplets, this transaction takes multiple
long-latency hops. Phase 2 consists of an intra-chiplet propagation, where the master core of each
chiplet initiates a propagation of the data to all other processes within its chiplet, through the wired
on-chip network. The transactions in the second phase might also take multiple on-chip hops to
reach their destination.

WiPackage implementation. In WiPackage, phase 1 of the broadcast implementation is per-
formed wirelessly with a single packet and hop (Figure 5.6b), instead of the multiple individual
packets through multiple long-latency inter-chiplet hops that the Baseline requires. This is a re-
sult of the natural broadcast capabilities of wireless, and is key to the performance improvement
obtained by WiPackage.
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(a) Baseline

(b) WiPackage

Figure 5.6: Propagation of data in an MPI Bcast for both Baseline and WiPackage architectures.
Solid lines indicate wired communication, whereas dashed lines are wireless. Blue lines refer to
intra-chiplet traffic, and red lines to inter-chiplet. Root process is shaded in gray, and master cores
shaded in blue.

5.5.3 Scatter

The Scatter primitive serves a similar purpose as the Broadcast routine described in Section
5.5.2, in the sense that it is used when one process possesses data that is required by a group of
other processes. However, while in the Broadcast primitive the designated root sends the same data
to all processes, in the Scatter the root sends different data to each process in the communicator.
Following Open MPI and MPICH, we choose to implement the Scatter primitive also with the
binomial tree algorithm [197], described in Section 5.5.2.

Baseline implementation. The propagation of data of the Scatter in a chiplet-based system is
analogous to the one shown in Figure 5.6a, with the difference that in each phase the root (of either
the whole tree or a sub-tree) must send half of all its data to its partner process, so that each can
then spread it in parallel. Consequently, the messages are bigger in the first steps than in the last
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ones, and the buffers for the intermediate processes must be sized not only to accommodate for
their corresponding data, but also for the partners they will communicate with in the subsequent
steps.

WiPackage implementation. Similarly as in the WiPackage implementation for the Broadcast

primitive (Section 5.5.2), the first phase of the Scatter can be transmitted wirelessly to bypass the
long-latency inter-chiplet hops of the wired on-package network. However, unlike in the Broad-

cast primitive, each chiplet must receive a different chunk of data from the root’s sending buffer.
Therefore, in the first step of the WiPackage implementation, the root broadcasts the entire buffer
wirelessly, and the master core of each chiplet picks its corresponding chunk of data by applying a
mask to it. Analogously as in the Broadcast primitive (Figure 5.6), in the second phase, the master
core propagates this chunk within its chiplet, through the wired on-chip network. Although again,
the sub-chunks sent to each partner are different and smaller at each step.

5.5.4 Gather

The Gather collective primitive aggregates elements from all processes in a communicator group
into a single process. Because a Gather can be viewed as a Scatter performed backwards, a Gather

is also implemented with the binomial tree algorithm (Section 5.5.2), but with the direction of the
data flow inverted – from the leaves to the root.

Baseline implementation. The Baseline implementation for the Gather follows the same 2-
phase approach as the Scatter (Section 5.5.3), but reversed: phase 1 and 2 take place in the opposite
order, and the direction of the data flow is also inverted. The number of steps, message sizes, and
intermediate buffer requirements are however the same as in the Scatter. Unlike Scatter, each tree
node in the Gather cannot proceed communicating with its parent until it has received all data from
its children, i.e. the master core of one chiplet must wait until all cores within its chiplet have sent
their data to it, before forwarding that data to the root chiplet. This restriction does not occur in
the Scatter, since a parent always has its data ready for all its children.

WiPackage implementation. Similarly as in the Baseline, in WiPackage, the data gathering of
all processes within a chiplet to the master core is also done through the wired on-chip network.
However, the second phase, where all master cores send their aggregated data to the root, is done
wirelessly. As in the WiPackage implementation of the other aforementioned primitives, this has
the advantage of bypassing the long-latency inter-chiplet wired links, and having the communica-
tion time to be distance-independent. Because the gathering of data from all master cores to the
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root follows an n-to-1 communication pattern, if the communication is not organized properly, it
could lead to bottlenecks in the wireless medium. This is why in WiPackage we make use of the
adaptive ring scheme described in Section 5.4.3, so that each master core only transmits on its
assigned slot. The organized transmission of data with a token-ring overcomes the chaotic genera-
tion of collisions by alternative random-access methods like BRS [140], and guarantees a time by
which data will be transmitted. Adding the adaptive ring sizing scheme further minimizes the wait
time of each master core before they are allowed to transmit.

5.5.5 Reduce

Global reductions and combine operations are two of the most common collective operations.
A global reduction uses a simple function like sum, max, or min to combine partial results from
each process in the communicator group, and deliver the result to the root node. Commonly, the
algorithm used for the Reduce is very similar to that of the Gather, with the difference that the
amount of data being transmitted is the same at each step of each of the two phases. Therefore,
both Baseline and WiPackage architectures implement the Reduce with the binomial tree algorithm
described in Section 5.5.4.

Baseline implementation. As already stated, the Baseline implementation of the Reduce is sim-
ilar to that of the Gather, in the sense that it consists of 2 phases, the first one being a propagation
within each chiplet, and the second one being a propagation across chiplets to the root. However,
the main difference here is that with Reduce, at the end of each communication step, each process
applies a reduction operation to the received data and its own, instead of aggregating both, before
sending the result to its parent.

WiPackage implementation. Because as we mentioned in Section 5.5.5 the Reduce implemen-
tation is somewhat similar to that of the Gather, in WiPackage we can also apply the adaptive ring
technique that we used in Section 5.5.4 and described in Section 5.4.3 to the Reduce implemen-
tation. Similarly as described in Section 5.5.5 however, the difference between the Gather and
the Reduce implementation is that the inter-chiplet communication is used to transmit the reduced
values of each chiplet, instead of the aggregated data of all its processes, and therefore for a given
message size, the overall wireless transmission time is lower in the case of the Reduce.

5.6 EVALUATION METHODOLOGY

We use the SST-macro [198] simulation framework together with the integrated SST-core [142]
as a discrete event simulator to model a server architecture with up to 64 chiplets and up to 16
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Table 5.1: Architecture modeled.
Package

Number of Chiplets 16 (4×4), 32 (8×4), and 64 (8×8, default)
NoP Interconnect Wired 2D-torus + Wireless
Wired NoP 20 ns/Hop [177], 100 Gb/s/Chiplet

Chiplet
Number of Cores 4 (2×2), 8 (4×2, default), and 16 (4×4)
NoC Interconnect Wired 2D-mesh
Wired NoC 10 ns/Hop [177], 100 Gb/s/Chiplet

General Parameters
Clock Frequency 2.1 GHz
Node Memory 1 GHz, 31 ns access latency, 16 GB/s/channel [194]

WiPackage Parameters
Data Wireless Channels 30/60/90/120 GHz, 25 Gb/s [181, 199, 200, 201, 202]
Tone Wireless Channel 240GHz, 1Gb/s [203]
Transceiver At 65nm: 0.25mm2, 30mW [77, 78]
Data Converter At 65nm: 0.03mm2, 0.72mW [79]
Serializer/Deserializer At 65nm: 0.04mm2, 10.8mW [80]
Antenna At 65nm: 0.08mm2 [81]
All RF Circuit in Node
(average, per channel)

At 65nm: Area: 0.4mm2, Transmitting: 39.4mW, Receiving: 39.4mW, Idle:
26.9mW (power gating analog amplifier, with transient energy of 1.14 pJ)

cores/chiplet. The architecture parameters as well as the energy and area of the wireless compo-
nents are shown in Table 5.1. Each processor tile is composed of an out-of-order core with private
L1 instruction and data caches. L2 is shared and physically distributed across the processor tiles.
For the NoC, we use a 2D-mesh topology with a latency of 10 ns/hop. We augment the simulator
to model wireless transmissions in detail. The wireless network has four data channels of 25 Gb/s
each, residing at four different central frequencies, as well as a tone channel of 1 Gb/s. The fre-
quencies are picked as multiples of a common denominator, i.e. 30 GHz, as this minimizes the
amount of bulky oscillators required to generate the carrier signals [181]. In Table 5.1, area and
power consumption figures are given on average, per channel, based on experimentally validated
transceiver and antenna designs [79, 80, 81, 181, 199, 200, 201, 202, 203].

Table 5.2 presents the applications we use for the evaluation, what they do, and the MPI Collec-
tives used in them. We used the compiler macros provided by SST-macro to compile the bench-
marks, and used manual instrumentation to break the runtimes down to the components.

5.7 RESULTS

In this section we first provide a performance and scaling analysis of each of the collective
primitives described in Section 5.5, we then evaluate the performance of 10 MPI applications in
WiPackage and compare it with that from the Baseline architecture. Finally, we show an explo-
ration of the impact that the different architectural parameters in both wired and wireless networks
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Table 5.2: Benchmark details

Name Description MPI Collectives
bfs Breadth First Search on a random graph MPI Bcast, MPI Gather
sssp Single Source Shortest Path on a random graph MPI Bcast, MPI Gather
matvec Matrix Vector Multiplication MPI Bcast, MPI Scatter,

MPI Gather
sobel Sobel edge detection on a random bitmap [204] MPI Scatter, MPI Gather
kmeans Partitions random input points into k clusters [205] MPI Bcast, MPI Scatter,

MPI Reduce
blackscholes Computes the prices of a portfolio of options MPI Scatter, MPI Gather
hist Computes a histogram from a random list [206] MPI Scatter, MPI Reduce
quad Approximate an integral using a quadrature rule [207] MPI Bcast, MPI Reduce
satisfy Exhaustive search for solutions of the circuit satisfy

problem [208]
MPI Bcast, MPI Reduce

tightloop Adding a list of elements synchronized by a barrier[45] MPI Barrier

(a) Broadcast (b) Scatter (c) Gather (d) Reduce

Figure 5.7: Latency of MPI bcast, scatter, gather, and reduce collectives, over different message
sizes, for WiPackage and Baseline.

have in the overall execution time of the primitives and applications studied. We will use XX/YY
to refer to a configuration with XX chiplets and YY cores per chiplet.

5.7.1 Characterization of Collective Primitives

Figure 5.7 shows the latency of Broadcast, Scatter, Gather, and Reduce MPI collective primi-
tives in Baseline and WiPackage as we increase the size of the messages. The figures also show the
speedup generated by WiPackage.
Broadcast. As demonstrated in Figure 5.7a, the 1-to-n pattern exhibited by the broadcast primitive
proves very efficient in WiPackage. This is because WiPackage uses a single wireless message
and hop to bypass the long-latency multi-hop inter-chiplet communication associated with the
Baseline. This advantage from WiPackage is more significant at smaller message sizes, where the
transmission time of the data is comparable to the latency overhead posed by the die-to-die wired
links.
Scatter. While the Broadcast and the Scatter primitives are implemented using a similar algorithm,
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Figure 5.8: Latency of MPI Barrier for different number of chiplets with 8 cores/chiplet, for
WiPackage and Baseline.

for any given message size m and p processes, the Scatter sends m×p data, whereas the Broadcast

sends m. This (p-1) difference factor is translated into the speedups of WiPackage shown in Fig-
ure 5.7b.
Gather. As shown in Figure 5.7c, the Baseline implementation of the Gather suffers a very similar
latency than the Scatter, since one is the inverse of the other. However, for WiPackage the imple-
mentation is sightly different, since the Gather makes use of the wireless adaptive ring, which
makes a slightly less efficient usage of the wireless medium than the Scatter (in the Scatter the
root always has data to transmit through the wireless medium, whereas in the Gather the master
cores not always have their data ready to be sent to the root). Because in wireless the n-to-1 com-
munication pattern of the Gather is slightly less efficient than the 1-to-n pattern of the Scatter, the
speedups exhibited by WiPackage are lower than in the Scatter.
Reduce. The Baseline implementation of the Reduce has a similar latency as the Broadcast (Fig-
ure 5.7d). This is because from the communication perspective, for the wired Baseline it is ba-
sically the same process but inverted. For WiPackage, the n-to-1 communication pattern of the
Reduce is optimized by the wireless adaptive ring, which proves even more efficient than in the
Gather, since for a given message size, the total size of the buffers being sent are smaller.
Barrier. As shown in Figure 5.8, WiPackage speeds up the Barrier primitive by a significant factor,
for all chiplet counts studied.

5.7.2 Application Workloads

Figure 5.9 shows the total runtime of the benchmarks in Baseline and WiPackage, normalized by
the Baseline runtime. The graph shows the runtimes for a 64 chiplet system. For each benchmark
we show the runtimes for a system with 4, 8, and 16 cores per chiplet. The first bar in each config-
uration is the Baseline runtime and the second bar is the WiPackage runtime. Each bar is broken
down into the runtime spent on computations (Compute), and the MPI collectives. Final set of bars

79



Figure 5.9: Execution time in WiPackage and Baseline, normalized to Baseline for 64 chiplets and
4/8/16 cores/chiplet. The bars are broken down based on execution time of MPI collectives.

in the figure shows the average runtimes for all benchmarks. arch produces an average speedup of
2.05x for the system with 64/8 configuration. Largest speedups were observed for programs that
include a significant amount of global communication (2.42x for tightloop followed by 2.3x
for bfs and sssp).

For the 64/8 configuration, WiPackage sped up broadcasts by 2.54x, gather by 1.19x, scatters
by 1.85x, and reduces by 1.10x. tightloop benchmark shows the benefits of WiPackage for
MPI barriers. WiPackage sped up the time processes spent waiting for all processes to arrive at the
barrier 3.69x.

As the figure shows average speedups decrease when increasing the number of cores per chiplet:
from 2.26x for a 64/4 configuration to 1.63x for 16 cores per chiplet. This is due to more time being
spent in the second phase of the collectives where data is shared internally.

5.7.3 Sensitivity to Architectural Parameters

(a) NoP link bandwidth (b) NoP hop latency (c) Number of wireless
channels

(d) Number of chiplets

Figure 5.10: Speedup of WiPackage over Baseline for different MPI collectives with message size
512 Bytes, over different parameters.
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Figure 5.10 shows the speedup of WiPackage over Baseline for the MPI primitives studied, for
different architectural parameters.
Sensitivity to NoP link bandwidth. In Figure 5.10a we see how Broadcast and Reduce are the
most robust primitives against a faster Baseline on-package wired network, whereas Scatter and
Gather fall behind.
Sensitivity to NoP hop latency. Figure 5.10b shows how the primitives that benefit the most from
WiPackage, such as Broadcast, are also the ones that lose the most advantage when the latency of
the Baseline die-to-die links goes down.
Sensitivity to number of wireless channels. While having multiple wireless channels allows for
multiple groups to communicate in parallel, it also allows for a single group to communicate faster
if it can make use of multiple channels at the same time. Figure 5.10c shows that primitives like
Scatter, Gather, and Reduce benefit more from hoarding multiple channels, whereas the higher
advantage posed by the Broadcast pattern is more robust to lower aggregated bandwidths.

Figure 5.11: Execution time in WiPackage and Baseline over an increasing number of chiplets.
Normalized to Baseline, for 8 cores/chiplet. The bars are broken down based on execution time of
MPI collectives.

Sensitivity to number of chiplets. Figure 5.11 shows the runtimes for our benchmarks for 16,
32, and 64 chiplet configurations with 8 cores per chiplet. WiPackage produced average speed ups
of 1.32x, 1.68x, and 2.05x for the 16/8, 32/8, and 64/8 configurations. These results show that as
the number of chiplets increase the speedups from WiPackage increase with it. This trend is also
confirmed by the pattern shown in the speedups of the primitives in Figure 5.10d.
Sensitivity to input size. Figure 5.12 shows the runtimes for the benchmarks when we increase
the input size. We collected the runtimes for multiple inputs for each benchmark. We increased
the input size 2x, 3x, and 4x. We observe that the speedups remain stable for communication-
heavy benchmarks. However, for benchmarks with reductions (quad, satisfy) and the tightloop
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Figure 5.12: How speedups scale as input sizes increase for a 64 chiplet system with 8 cores/chiplet

benchmark, the communication volume does not grow as the number of input points increase,
leading to lower speedups in bigger inputs.

5.8 RELATED WORK

Chiplet-Based Architectures. The chiplet approach has been shown to scale performance while
improving yield in multi-CPU [169, 209], multi-GPU [170, 210], and multi-FPGA [211] architec-
tures. The work by Fotouhi et al. explores the NUMA implications of coherence across multiple
chiplets and how to adress them with a multi-chip bus [186]. All these approaches, however, suffer
from scalability issues when increasing the chiplet count due to the interconnect limitations, which
WiPackage aims to break with wireless technology.

Others have investigated how to scale out DNN accelerators with chiplets. NVIDIA demon-
strated Simba, a weight stationary dataflow accelerator with up to 36 chiplets in a MCM mesh
[177]. Tan et al. analyzed how the number of chiplets and their size affects the performance of
Simba-like accelerators [212]. Further research on how to improve over Simba has proposed the
use of wireless technology up to 16 chiplets with data compression [213] and 64 chiplets with
adaptive dataflows [180]. The low-latency broadcast allows to speed up multicast data distribu-
tion. However, unlike WiPackage that targets general-purpose supercomputing broadly, the gains
of [180, 213] are limited to the DNN accelerator domain only.
Wireless Architectures. We described WiSync [45], Choi et al. [132], WIENNA [180] and WiDir
[179] in Section 5.1. Other works use a WNoC to accelerate the communication of certain appli-
cations [63, 147, 148]. These differ from WiPackage in that all architectures (except WIENNA)
are single-chip and use a single wireless channel, and that only a set of applications are optimized
(except WiDir). WiPackage, for the first time, exploits the benefits of multi-channel wireless in-
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package communications to enable scalable and general-purpose supercomputing on a package.
Network-on-Package (NoP). Most multi-chip architectures count on either a fully connected NoP,
e.g. Infinity Fabric [176], or a mesh NoP [170, 177]. These NoPs can already pose correct-
ness challenges in heterogeneous architectures, which can be addressed at routing as illustrated in
[210]. Other works have proposed novel topologies for multichip systems with passive or active
interposers [168, 172, 214, 215], aiming at improving scalability while minimizing pin usage and
interposer area.

The wireless NoP approach has been investigated in very few works. In [193], antennas commu-
nicate without distinction both within and across chips, creating a seamless interconnect across the
system. In [189], the wireless NoP is designed to prioritize one-to-many transfers from memory
to processor chiplets over one-to-one or many-to-few communication flows. In both cases, one
channel at 16 Gb/s, which is insufficient in modern multi-chip processors. In WIENNA [180],
the wireless network operates at 64 or 128 Gb/s with a unidirectional wireless network that does
not require collision handling. WiPackage is different in that four channels of 25 Gb/s each are
dynamically shared across the chiplets via an intelligent MAC protocol optimized for the MPI
primitives.
Other technologies. There are two emerging technologies that can also offer inter-chiplet broad-
cast capabilities and low latency: nanophotonics [186, 216, 217] and integrated RF transmission
lines [164, 218, 219]. Although these technologies are more efficient and provide more bandwidth
than wireless communication, they are (i) more complicated as they require laying out an extra
and overprovisioned network through the package, and (ii) less scalable as they are still limited by
constraints related to pin scarcity, fanout, or laser power requirements.

5.9 CONCLUSION

To alleviate the pressure of directory-based coherence in chiplet-based manycores, and to by-
pass the high hop count and long latency associated with chiplet-to-chiplet communication, this
work proposed a hierarchical memory and network architecture, called WiPackage. WiPackage

used on-package wireless network technology to augment the standard implementation of common
message-passing collective primitives to send data across chiplets. WiPackage carefully integrates
wired and wireless operations in a seamless manner. In this work, we described the architecture and
the implementation of these primitives in detail. Further, and evaluation showed that WiPackage

substantially reduces the execution time of most common MPI collective primitives. For 64-chiplet
runs with 8 cores per chiplet, WiPackage reduced the execution time of applications by an average
of 2.05x compared to the Baseline implementation. Moreover, WiPackage was shown to be more
scalable than the Baseline. These benefits were obtained with a very modest power cost.
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CHAPTER 6: CONCLUSIONS

This thesis presented several applications of on-chip wireless technology for hundred-core sys-
tems and beyond. In diverse ways, the proposed systems take advantage of the properties of wire-
less to overcome the scalability challenges left unmet by wired on-chip networks in manycore
processors.

First, this thesis presented the design and implementation of Replica, a manycore architecture
that uses wireless communication for synchronization and communication-intensive ordinary data.
In Replica, we also proposed an adaptive wireless protocol with selective message dropping to
offer improved performance. The adaptive wireless protocol presented and employed in Replica

was subsequently expanded and researched in much greater depth in the second study, Fuzzy-

Token, which is a medium access control protocol specifically tuned to the unique characteristics
of wireless on-chip networks. We showed that with a set of simple rules, Fuzzy-Token achieved the
low latency of contention-based protocols at low loads, and the high throughput of fair collision-
free protocols, such as token passing, at high loads. We evaluated the Fuzzy-Token protocol in a
variety of synthetic traffic patterns and with real application traces, demonstrating a severalfold
speedup with respect to other state-of-the-art protocols.

The third effort augmented a traditional directory-based invalidation cache coherence protocol
with wireless communication to increase the programmability of the system provided in the first
work. The resulting protocol, dubbed WiDir, transitions between wired and wireless coherence
transactions for the same data in a programmer-transparent manner depending on access patterns.
In this thesis we described the protocol in detail, and showed that WiDir substantially reduces
the memory stall time of applications. For 64-core runs, WiDir reduced the execution time of
applications by an average of 22% compared to MESI.

Lastly, in the fourth contribution of this thesis, we focused on the novel chiplet paradigm, and
its scalability concerns beyond a handful of dies. To overcome the pressure of coherence traffic,
and to bypass the long latency associated with chiplet-to-chiplet communication, we presented
WiPackage. To transport data between chiplets, WiPackage used on-package wireless network
technologies and enhanced the conventional implementation of common message-passing collec-
tive primitives. WiPackage meticulously blended wired and wireless functions for a seamless ex-
perience. Our evaluation showed that WiPackage significantly decreases the execution time of
the majority of MPI collective primitives. When compared to a traditional wired implementation,
WiPackage decreased application execution time by an average of 2.05x for 64-chiplet runs.

Our contributions, together with other advances in the field of on-chip scale wireless communi-
cation, pave the way for scalable and efficient manycore processors for general-purpose computing,
machine learning acceleration, and high-end server processors.
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