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Motivation

Computations with broadcast and fine-grained data
sharing do not scale well in shared-memory architectures
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Manycore with a Network-on-Chip
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Manycore with a Network-on-Chip
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Manycore with a Network-on-Chip
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Manycore with a Network-on-Chip
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Manycore with a Wireless Network-on-Chip

* Low latency (speed of light = = 0.1 ns to cross 3x3 cm chip)
* Inherently broadcast (can update all cores at once)

* Flexible (e.g. different apps = different channels)
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[IEEE MICRO '15] “Broadcast-Enabled Massive Multicore Architectures: A Wireless RF Approach”, Abadal et al.



Replica: On-chip wireless communication
for latency critical and highly shared data

Wireless Antenna (@)
and Transceiver ”
é wore /
LY.

/1 g N

Broadcast memory
(32-512 KB)

[ASPLOS ‘19] "Replica: A Wireless Manycore for Communication-Intensive and Approximate Data.”, Fernando et al.



Replica: On-chip wireless communication
for latency critical and highly shared data
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[ASPLOS ‘19] "Replica: A Wireless Manycore for Communication-Intensive and Approximate Data.”, Fernando et al.



Replica: Architecture
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Replica: Example

int* counter = (int*) wireless malloc(size

counter




Replica: Write
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Replica: Write
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Replica: Write - Example
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Replica: Write - Example
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Replica: Write - Example
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Replica: Write - Example
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Replica: Reads
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Replica: Wireless channel

* One channel, shared by all cores
* Everyone receives what one core transmits

* Only one core can transmit at a given time
* Ensures the same order of updates across all BMems




Layers of a Wireless NoC architecture
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Challenges: [:Yo]oli[e]1le]g

e Limited wireless bandwidth:

* Greedy usage of wireless = poor overall performance
* How do we split data between wired and wireless NoC?

* Traditional apps written to minimize data sharing

 Historically, multicast/broadcast communication has
been expensive = architecture designed to hide latency

* Hard to find off-the-shelf algorithms that exploit unique
properties of wireless
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Opportunities: [:YeJelile=]ule]g

* Tools to identify/autotune highly-shared data

* Approx. resilient apps = Selective message dropping
e BER (Bit Error Rate) « 5
ower tx.

* Can also apply to baseline, but has higher impact on wireless
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[ASPLOS ‘19] "Replica: A Wireless Manycore for Communication-Intensive and Approximate Data., Fernando et al. 53



Opportunities: [:YeJelile=]ule]g

* Multithreaded benchmarks w/ data sharing
e SPLASH-2, PARSEC, CRONO... (scientific simulations, computer

vision, graph applications...)

Benchmark Sharing Pattern

Water Broadcast

BFS Irregular: many-to-many
Bodytrack One-to-many

SSSP Irregular: many-to-many
CC Irregular: many-to-many
Streamcluster One-to-many, reduction
Pagerank Irregular: many-to-many
Community Irregular: many-to-many

Approximations

Precision reduction
Approximate Stores
Approximate Stores
Approximate Stores
Approximate Stores

Cyclic collection updates
Skipping negligible updates

Approximate Stores

 What about machine learning algorithms?
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Challenges/Opportunities:

* Wireless capabilities should be exposed to users

* |If too cumbersome to use 2 technology will not catch
e Libraries should take the burden, not the users

* Need to rethink and rewrite implementation of
popular parallel programming libraries/frameworks

 ...and the popular apps that use them too
* E.g. wireless _malloc*, locks/barriers, etc.

OpenMP EScala
WPl 2] Ackka

Charmworks

*[ASPLOS ‘19] "Replica: A Wireless Manycore for Communication-Intensive and Approximate Data.”, Fernando et al.
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Challenges:

 Memory management might require changes
» Separate between standard and wireless memory

 Historically, thread scheduling exploited locality to
minimize communication cost between threads

* This requirement might no longer hold (constant
propagation time)
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Opportunities:

* Can we relax the thread scheduling policies?
e Speed up OS synchronization?

* Broadcast interrupt requests (IRQs)
e e.g. core wake-up
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Challenges: Architecture

» Area/Energy overhead
* Dennard scaling no longer holds = power is scarce

* Multiple frequencies/channels
* More channels > More data parallelism
* How to distribute data across channels?

» Separate memory for regular/wireless data?

Manycore architecture (Piton*) Integrated RF Transceivers

Challenges

*[HotChips ‘16] "Piton: A 25-core Academic Manycore Research Processor”, McKeown et al.
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Opportunities: Architecture

* Chiplets paradigm

* Die-to-die wireless communication?

* Instruction Set Architecture (ISA)
e Extensions for wireless-specific operations?

* Scalability with number of cores
e Clustering of antennas?
* Broadcast?
* Point-to-point + routing?
* Layout sensitivity analysis
* Closer to core = lower latency, smaller transc. size
* Farther from core = higher latency, bigger transc. size



Wisync: BMem for synchronization
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1.4x speed up over conventional wired multicore (Geometric Mean)

[ASPLOS ‘16] "WiSync: An Architecture for Fast Synchronization through On-Chip Wireless Communication”, Abadal et al.
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Replica: BMem for synch + shared data
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[ASPLOS ‘19] "Replica: A Wireless Manycore for Communication-Intensive and Approximate Data.”, Fernando et al.
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Replica: BMem for shared data + approx

7.2->9.77

3.5

1.89x speed up (Geometric Mean)

[ASPLOS ‘19] "Replica: A Wireless Manycore for Communication-Intensive and Approximate Data.”, Fernando et al.
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Energy and area
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* Faster execution =2 33% energy reduction
* Replica components: 9% of total energy consumed

 15% area overhead (over standalone wired NoC)
* 11% from the BMem + 4% from the transceiver/antenna
* Using the same area to increase the L2 cache has little
impact on performance (1.04x speedup)



Challenges: Network + Link

* Medium Access Control (MAC):
 Different applications = different sharing patterns
 Traffic varies within and across applications
* Needs to deal with bursts and hotspots
e Contention based (CSMA) vs. controlled access (Token)
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Opportunities: Network + Link

* Medium Access Control (MAC):

* Static environment = no hidden terminal problem

* Need low overhead > nanoseconds matter!
* Example: Broadcast Reliability Sensing protocol (BRS)*

* Wireless NoC is multipurpose:
* Number of participants: broadcast vs point-to-point*

 Latency-critical data (send critical word first, rest later)
* Multiplexing techniques? E.g. FDMA, SDMA, TDMA...

*[NoCArc ‘16] "A MAC protocol for Reliable Broadcast Communications in Wireless Network-on-Chip“, Mestres et al.
*[IEEE Emerging ‘12] "Wireless NoC as Interconnection Backbone for Multicore Chips: Promises and Challenges”, Deb et al.



Replica : Wireless Message

e 80 bits* (13-bit address + 64-bit data + 3-bit checksum/other)

///// //// //// ___ I
4 cycles at 20Gb/s’

*[ASPLOS ‘19] "Replica: A Wireless Manycore for Communication-Intensive and Approximate Data.”, Fernando et al.
[IEEE Design & Test ‘14] "Architecture and Design of Mul5-Channel Millimeter-Wave Wireless Network-on-Chip”, Yu et al.
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Broadcast Reliability Sensing Protocol

* Collision detection with half-duplex radio & minimal latency
* An ACK-free version of CSMA - ACKs are too expensive!

////

/////

___

| |
0 1 5 Time
t —
Check if Check if
medium is collision
free occurred

[NoCArc ‘16] "A MAC protocol for Reliable Broadcast Communications

in Wireless Network-on-Chip”, Mestres et al.



Opportunities: Network + Link

* Another example: Replica Adaptive Wireless Protocol
 Sparse traffic 2 use BRS (transmit ASAP)
 Bursty traffic 2 use Token-Ring (avoid starvation)
* Runtime: switch BRS—Token by observing behavior

* # of collisions
* # of skipped token slots

Stat_>

 J
> BRS <. —» Tokenring [«
0 New free slot
New packet | E L or packet
Update counters ; Update counters
B
L J Z* L J
Ratio=T eanens Ratio = Ttoken
False ERS True True@m

[ASPLOS ‘19] "Replica: A Wireless Manycore for Communication-Intensive and Approximate Data.”, Fernando et al.
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Challenges: Physical

* Transceiver trade-offs: performance vs area/energy
 # of channels = parallelism vs. wasted bandwidth
 Spectral efficiency vs. Complexity of modulation

* Antenna efficiency
* Shape must fit chip package = potentially sub-optimal size

e Tx power vs. Bit Error Rate (also determined by the medium)
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[IEEE Transactions ‘18] "OrthoNoC: A Broadcast-Oriented Dual-Plane Wireless Network-on-Chip Architecture”, Abadal et al.
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Opportunities: Phys

ical

* WNoC = Many antennas next to each other

* Undesired coupling effects?

» Controlled environment = Opportunistic beamforming!
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[ISCAS “19] "Opportunistic Beamforming in Wireless Network-on-Chip”, Abadal et al.
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Opportunities: Physical

* WNoC = Many antennas next to each other
* Undesired coupling effects?
» Controlled environment = Space-Division Multiplexing!

\ Parallel Configurations /

[ISCAS “19] "Opportunistic Beamforming in Wireless Network-on-Chip”, Abadal et al.
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Challenges:

* The intra-chip wireless channel is relatively unknown

 Characterization is essential for transceiver
implementation

* Free-space conditions?
* Same rules as off-chip transmission?

* There is a need to understand the chip package

effects on propagation |
:;:::a::z:d

Printed
Conductor Runs

Substrate
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Opportunities:

* Make a realistic chip package model

T
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Heat spreader | | Interconnect layers | | Ceramic substrate

[ISCAS ‘18] "Millimeter-Wave Propagation within a Computer Chip Package”, Timoneda et al.
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Opportunities:

* |Investigate wave propagation with full-wave solver (CST)

Monopole antenna

[ISCAS ‘18] "Millimeter-Wave Propagation within a Computer Chip Package”, Timoneda et al.
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Opportunities:

* Tweak package parameters to minimize path loss
e AIN: Aluminium Nitride (Dielectric)
* Si: Silicon
* S, ... worst-case path loss among all fregs. in bandwidth

-32 _
m— Si=0.10 mm
e — | e—Si=0.11 mm
_34""""-—— To— [ Si=0.12 mm

e S51=0.13 mm
e S1=0.14 mm

SiI=0.15 mm

Thin Si and thick AIN
leads to maximum S, ..

Mean Smin [dB]

083 084 085 0.86
AIN thickness [mm]

[ISCAS ‘18] "Millimeter-Wave Propagation within a Computer Chip Package”, Timoneda et al.
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Challenges/Opportunities: Simulation

* Wireless NoCs usually have > 64 cores:
» Architecture simulators do not scale well (long sim. time)
* |f they scale, they do not model network in detail

e Architecture simulators:
* Gemb5, Multi2sim, Zsim, Prime, Sniper, etc.

* Network simulators (good scalability):
* Noxim (includes WNoC capabilities)

* Garnet2.0 (integrated into Gem5)
* Booksim2, ATLAS, DARSIM, FlexNoC, etc.

e Can we get scalable integrated arch+net simulators?




Thank you!

WNoC unique points:

Multi layered system with many
co-design opportunities

Ability to break long-standing
architecture assumptions

Static environment opens up door
for redesign of many off-chip
wireless protocols and schemes

Application
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Extra slides



Opportunistic beamforming

The solution is opportunistic because

« It exploits already existing antennas

« Cores are, by definition, tightly synchronized
through the system clock

« Data may be already present in several cores due to
architectural/software mechanisms

« With few directions (row/column) the scheme is
already relevant; coarse-grained steering is enough.
This simplifies the phase shifters



Opportunistic Beamforming
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« Each core has its antenna and transceiver
« By default, broadcasts through one antenna

« |f needed, two or more antennas are activated

simultaneously through a shared controller
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Walkthrough example: 2x2 cluster
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Opportunistic Beamforming

« The separation between antennas is
chosen to be A/4

« At mmWave, compatible with core sizes
« |t avoids grating lobes by being < A
« Allows to obtain single-sided patterns



Integrated RF Transceivers

« For the WNoC idea to
make sense, we need
« 10+ Gbps
- ~1 plJ/bit
« ~100 Gb/s/mm?

« Transceiver designis «
getting up to speed

Power Consumption (mW)

)

S. Abadal, M. Iannazzo, M. Nemirovsky, A.
Cabellos-Aparicio, H. Lee, E. Alarcon,"On the
Area and Energy Scalability of Wireless
Network-on-Chip: A Model-based
Benchmarked Design Space Exploration,”
IEEE/ACM Transactions on Networking, vol.
23, no. 5, pp. 1501-1513, Oct. 2015.

Transceiver Area (mm

Data Rate (Gb/s)

1000 =
\ [m] [m] o
' ® . o 10 pJibit
[ 4 O J
O O o a
D ) ]
100 - 2 pa
- l"\_,GJ ///,/
"1 pJibit
WPAN A
On-chip ©
Predictions 5
10 &~
1 10 100
Data Rate (Gb/s)
10 :
[m] O o 5
a 10 Gb/s/mm?- 0
O L O o5
O o ' O
D0
- = an . u]
1t B g 100 Gb/s/mm?
] /’
II;! :::I':I
WPAN
On-chip
0.1
1 10 100



