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Abstract– Wireless Network-on-Chip (NoC) has emerged
as a promising solution to scale chip multi-core processors
to hundreds and thousands of cores. The broadcast nature
of a wireless network allows it to significantly reduce the
latency and overhead of many-to-many multicast and broad-
cast communication on NoC processors. Unfortunately, the
traffic patterns on wireless NoCs tend to be very dynamic and
can change drastically across different cores, different time
intervals and different applications. New medium access pro-
tocols that can learn and adapt to the highly dynamic traffic in
wireless NoCs are needed to ensure low latency and efficient
network utilization.

Towards this goal, we present NeuMAC, a unified approach
that combines networking, architecture and deep learning to
generate highly adaptive medium access protocols for wire-
less NoC architectures. NeuMAC leverages a deep reinforce-
ment learning framework to create new policies that can learn
the structure, correlations, and statistics of the traffic patterns
and adapt quickly to optimize performance. Our results show
that NeuMAC can quickly adapt to NoC traffic to provide
significant gains in terms of latency, throughput, and overall
execution time. In particular, for applications with highly dy-
namic traffic patterns, NeuMAC can speed up the execution
time by 1.37×−3.74× as compared to 6 baselines.

1 Introduction
Recently, there has been an increasing interest from both
industry and academia to scale network-on-chip (NoC) mul-
ticore processors to hundreds and thousands of cores [11,
21, 25, 49]. To enable such massive networks on chip, com-
puter architects have proposed to augment NoC multicore
processors with wireless links for communication between
the cores [7, 9, 54, 65, 91]. The broadcast nature of wireless
networks enables the NoC to significantly reduce the num-
ber of packets that the cores need to communicate to each
other as well as the latency of packet delivery [1, 38]. Both
aspects play a central role in scaling the number of cores on
an NoC multicore processor (See Background Section 3 for
details) [1, 8, 38, 50, 56]. These benefits have motivated RF
circuits designers to build and test wireless NoC transceivers
and antennas that can deliver multi-Gbps links while impos-
ing a modest overhead (0.4–5.6%) on the area and power
consumption of a chip multiprocessor [31, 93, 99, 100].

While the use of wireless can significantly benefit NoCs, it
brings on new challenges. In particular, the wireless medium
is shared and can suffer from packet collisions. Design-
ing efficient medium access protocols for wireless NoCs

is, however, difficult. The traffic patterns in NoCs tend to
change drastically across applications. Even during the exe-
cution of a single application the traffic pattern can change
as fast as tens of microseconds [4, 38]. As a result static
MAC protocols such as TDMA, FDMA and CSMA perform
poorly [17, 33, 35, 61, 70, 71, 89]. Further, due to thread syn-
chronization primitives likes barriers and locks in parallel
programming, the wireless NoC exhibits complex hard-to-
model dependencies between packet delivery on the network
and execution time. As a result, even adaptive protocols that
try to switch between TDMA and CSMA or optimize for long-
term throughput [40, 65, 66], perform poorly in the context
of wireless NoCs since they remain agnostic to these domain
specific and intricate dependencies. Hence, the design of ef-
ficient medium access protocols has been identified as a key
bottleneck for realizing the full potential of a wireless NoC
multiprocessor [6, 12].

In this paper, we present NeuMAC, a unified approach
that combines networking, architecture and deep learning
to generate highly adaptive medium access protocols for a
wireless network on chip architecture. NeuMAC leverages a
reinforcement learning framework with deep neural networks
to generate new MAC protocols that can learn traffic patterns
and dynamically adapt the protocol to handle different appli-
cations running on the multi-core processor. Reinforcement
Learning (RL) has proved to be a very powerful tool in AI for
generating strategies and policies that can optimize for com-
plex objectives [68, 81]. RL allows NeuMAC to make better
decisions by learning from experience. In particular, many
basic functions, like FFT, graph search, sorting, shortest path,
etc., tend to repeatedly appear in many applications. Past work
also shows that a number of unique periodic traffic patterns
emerge in multiple different programs, and as the number
of cores increases, the traffic patterns show increasingly pre-
dictable spatiotemporal correlations and dependencies [3, 4].
NeuMAC learns these statistics and correlations in the traf-
fic patterns, to be able to both predict future traffic patterns
based on traffic history and adapt its MAC protocol to best
suit the predicted future traffic. Furthermore, RL enables Neu-
MAC to account for hard-to-model complex dependencies
between execution time and delivery of packets. In particular,
we carefully engineer the reward function in RL to optimize
for execution time rather than to simply improve the latency
and throughput of the network.

Indeed, RL has been leveraged for wireless MAC protocols
in the context of heterogenous wireless networks [43, 101],
sensor networks [41], and IoT networks [62]. However, bring-
ing these benefits to wireless networks on chip faces a num-



ber of unique challenges. First, past work runs RL inference
for every packet at each time step, which is not feasible for
WNoCs since the time scale of operation in a multicore pro-
cessor is in the order of nanoseconds. Hence, per time-slot
inference would significantly delay every packet transmission.
Second, due to compute resource constraints, it is also not
feasible to run RL inference at every core of the wireless
NoC. While the second challenge can be addressed using a
centralized controller for the RL model, it would still incur
significant communication overhead and latency to collect the
states from the nodes (e.g. traffic injections or buffer occu-
pancy) and to inform the nodes when to transmit.

NeuMAC addresses these challenges by designing a frame-
work where the controller is trained to generate high-level
MAC policies simply by listening to on-going transmissions
on the wireless medium. This allows NeuMAC to eliminate
any communication from the cores to the controllers. More-
over, to amortize the overhead of inference and policy updates,
NeuMAC only updates the cores with a new MAC policy once
every interval spanning many execution cycles (e.g. ten thou-
sand cycles). We also train NeuMAC to learn policies that are
highly adaptive and simple to update, to reduce communica-
tion overhead from the controller to cores.

Finally, NeuMAC also needs to operate within the strict
timing and resource constraints of the multicore processor.
Modern deep neural networks, however, are designed with up
to a billion tunable parameters and operate on high dimen-
sional input spaces [47, 80]. Consequently, they require large
amounts of memory and computational resources, and also
suffer high inference latencies (tens of milliseconds) [46, 63].
To address this, we design NeuMAC’s RL framework such
that the input and output of the neural network scale linearly
with the number of cores. This ensures that NeuMAC is ex-
pressive enough to service the highly dynamic network traffic
while at the same time operate under the limited memory
and computational resources. Specifically, NeuMAC’s neural
network requires three orders of magnitude less parameters,
and adds a small area overhead to the multicore processor. It
also has an inference latency that is small enough to meet the
strict timing constraints of the multicore during run-time as
we show in detail in Appendix A.

We evaluate NeuMAC by integrating it with a cycle-level
architectural simulator for CPU-GPU heterogeneous com-
puting that faithfully models the intricacies of multi-core
processors [87]. We augmented the simulator with an on-
chip wireless network that accurately models transmissions,
collision handling and packet losses. We test NeuMAC’s per-
formance on real applications chosen from diverse domains
such as graph analytics, vision and numerical simulations. We
compare NeuMAC against six baselines including wired NoC,
standard CSMA, TDMA, optimal CSMA protocols [79], adap-
tive protocols [38, 65], and an optimal oracle. Our evaluation
reveals the following:
• For a 64-core NoC, NeuMAC is capable of learning traffic

patterns and adapting the medium access protocol at a
granularity of 10µs to achieve a median gain of 2.56×
−9.18× in packet latency and 1.3×−17.3× in network
throughput over different wireless NoC baselines.

• NeuMAC’s throughput and latency gains translate into an
average of 10%−47% speedup in execution time over wire-
less NoC baselines which goes up to 1.37×−3.74× for
certain applications. The results also show a 3.4× speedup
on average over a purely wired NoC.

• NeuMAC’s gains in execution time are close to the upper
bound that can be achieved by a wireless network with
infinite capacity and zero latency.

• As the number of cores scale up to 1024 cores, NeuMAC’s
performance gain increases to 3 orders of magnitude lower
latency and up to 64× higher throughput over baseline
protocols.

• NeuMAC is robust to lossy channels, and sees minimal
degradation in performance with upto 10% packet losses.
We also test NeuMAC’s sensitivity to noise in the observed
state and show almost no loss in performance.

Contributions: We make the following contributions:

• We introduce the first MAC protocol that can learn and
adapt to the highly dynamic traffic at very fine granularity
in a wireless NoC processor. The protocol also accounts
for non-trivial dependencies between packet delivery and
computation speedups by optimizing for execution time.

• We design a lightweight deep reinforcement learning frame-
work that introduces little overhead to the multi-core pro-
cessor and can operate within tight timing, power and area
constraints of chip multicore processors.

• We extensively evaluate our design and demonstrate signif-
icant improvement in network performance and reduction
in the overall execution time on the multicore processor.

2 Motivation and Insights
The wireless traffic patterns on a multicore processor have
been shown to vary significantly across different applications.
Even for a single application, the traffic can vary across dif-
ferent cores (spatially) and across different time intervals
(temporally) [4, 6, 12, 38, 83].

Fig. 1(a) shows examples of traffic traces captured from a
cycle-level architectural simulator for three different common
benchmark applications on a 16-core multiprocessor. The
x-axis shows the time in clock cycles, the y-axis shows the
core ID, and the scatter points show the injection of traffic at
each core. For clarity, we only show a portion of the execu-
tion spanning ten thousand cycles. Some applications, like
PageRank shown in Fig. 1(a)(i), have almost constant traffic
on all cores and can benefit from a contention-free protocol
like TDMA. Other applications, like computing the Short-
est Path in a Graph shown in Fig. 1(a)(ii), have very bursty
traffic and can benefit from a contention-based protocol like
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Figure 1: Illustrative Examples: (a) Traffic Pattern on a 16-core multiprocessor for different applications. The X-axis shows clock cycles, and the Y-axis
corresponds to each of the 16 cores. The figures depict the scatter plots representing the packet injections into the buffer of each core. The different colors for
packet injections are used for different cores. (b) NeuMAC can quickly adapt to fast changing traffic thus ensuring efficient network utilization throughout the
application’s execution. In the generated protocol, high probability values (closer to yellow in colormap) represent a CSMA-like protocol whereas low probability
values (closer to blue) represent a TDMA-like protocol. (c) NeuMAC can learn and optimize for the intricate dependencies between the executions on different
cores, and in turn optimize directly for end-to-end execution.

CSMA. Moreover, in most applications, the traffic pattern
changes within the execution of the application. For example,
Fig. 1(a)(iii)-(iv) show the traffic patterns at different times
in the execution of BodyTrack, a computer vision application
for tracking body pose. In the first time interval, since there is
steady injection of packets into the network on the 10 active
cores, a contention-free scheme will be optimal to minimize
collisions, whereas in the second time interval, a CSMA-like
based scheme for all 16 cores will perform better due to the
sparse traffic injection. Next, we present concrete examples
showcasing the range of protocols that NeuMAC can generate
for different traffic patterns.

A. Adapting to Dynamic Traffic Patterns: To further ap-
preciate the spatial and temporal changes across the execution
of an entire application, we show the traffic trace for the ap-
plication CC (Connected Components of a graph), running on
a 64-core processor in Fig. 1(b)(i). Here we can see that the
traffic varies significantly across the application’s execution.

Fig. 1(b)(ii) presents the protocol generated by NeuMAC.
At a very high level, NeuMAC’s protocol is simple. Each core
gets its own dedicated time slot where it can transmit with
probability 1 if it has traffic. Additionally, core i can also
transmit in time slots assigned to the other cores with some
contention probability pi. By setting these probability values
pi for each core, NeuMAC dictates the MAC protocol on the
wireless NoC. The figure shows these contention probabili-
ties pi’s for each core generated by NeuMAC. We present
NeuMAC’s protocol design in more detail in Section 4.3.

From Fig. 1(b)(ii), we can see that NeuMAC is able to
adapt quickly to the changes in the traffic patterns, becom-
ing more TDMA-like when the traffic is dense (contention
probabilities pi’s are 0 and everyone transmits only in their

assigned slot), and becoming more CSMA-like with sparse
traffic (contention probabilities pi’s are high and cores can
start transmitting in other’s assigned time slots). In the case
of CC, we can see that initially the traffic pattern is extremely
sparse and structured such that a simple “Aloha” protocol
would suffice. As a result, in the beginning the cores contend
for the channel aggressively under NeuMAC’s protocol. How-
ever, once the traffic pattern becomes more dense, NeuMAC
adapts the protocol to be more TDMA-like, thus ensuring
high network utilization. Finally, once the traffic pattern be-
comes less dense after 18∗104 cycles, the cores again start to
contend for the channel with higher probability, thus emulat-
ing a CSMA-like protocol. Note that, while NeuMAC is able
to quickly detect traffic changes from dense to sparse at time
steps 11 and 18 (From Fig. 1(b)(ii)), it does not immediately
increase contention probabilities for the cores. Instead the
change is gradual, and this is because of the outstanding pack-
ets remaining in the buffers immediately after the phase with
dense traffic injection. As a result, immediately switching the
probabilities would lead to large number of collisions.

The above example demonstrates that NeuMAC is able to
learn fine-grained highly dynamic MAC protocols that can
quickly adapt to support different kinds of traffic patterns,
while accounting for subtle characteristics of network opera-
tions such as buffer build-ups even though this information
is not explicitly fed into NeuMAC’s RL model. While there
has been a lot of work on adaptive and optimal CSMA pro-
tocols [51, 73, 77, 102], these works are theoretical and make
unrealistic assumptions. In particular, they optimize for long
term throughput and assume that the protocol can reach a
steady-state operation much faster than the variation in traffic
patterns, which does not hold for wireless NoCs. As a result,
these protocols perform poorly as we show in section 6.



B. Optimizing for Synchronization Primitives: Another
challenge in designing efficient protocols stems from syn-
chronization primitives. These primitives impose intricate
dependencies between the execution of threads on different
cores, leading to a non-trivial relationship between the deliv-
ery time of packets on the NoC and the progress of execution
on each core. For example, in parallel computing it is com-
mon practice for software developers to use barriers for
synchronization. These barriers are placed throughout the
code of a multithreaded application in order to force each
thread to stop at a certain point, blocking its execution until
all participating threads catch up. Most standard libraries for
parallel programming use barriers in many of its primitive
routines in order to ensure the correctness of the program,
such as OpenMP’s For loop [23], or MPI’s Send/Recv [45].
Therefore, there is complex but predictable structure in the
traffic patterns caused by these synchronization primitives
that can be exploited to improve parallel speedup and scalabil-
ity of high performance applications. Hand tuning protocols
to account for these dependencies is non-trivial. For exam-
ple, the cores themselves do not explicitly know that they are
involved in a barrier before they actually reach the barrier
and execution halts. [28, 82]. Past work on designing MAC
protocols mainly optimizes for throughput and latency, and is
agnostic to such dependencies.

As a concrete example, consider the multiapplication jobset
comprising of three concurrent applications, namely a 4-core
BFS, a 4-core CC and a 8-core Pagerank, running on a 16-core
multiprocessor as shown in Fig. 1(c)(i). In the traffic trace,
one can observe two sets of barrier packets in the execution
of BFS, denoted by black squares. The other two applications
have no barriers in this portion of their executions. Here,
note that core 16 has significantly more packets to transmit
before arriving at its barrier, whereas core 13, 14 and 15 arrive
at their barriers sooner. As a result, the execution on cores
13, 14 and 15 is blocked until core 16 clears its barrier, thus
rendering the compute resources of these three cores useless
as they idly wait for core 16. Additionally, at the same time
core 16 also has to contend for the channel with traffic from
CC, which itself has a lot of ongoing communication. Ideally,
the MAC protocol in this case should prioritize traffic of the
core that is falling behind, so that it arrives to the barrier and
clears it as soon as possible, allowing the blocked cores to
proceed execution and thus optimizing overall execution time.
In Fig. 1(c)(ii), we can see that NeuMAC can learn to account
and optimize for such dependencies. At the start, NeuMAC
assigns high contention probabilities to cores 13 to 16 so that
it can clear the barrier point at the earliest, while assigning
low contention probabilities to cores 9 to 12. Once the barrier
is cleared, NeuMAC increases the contention probabilities
for the CC cores, so that it can transmit on the channel while
the other applications go through low communication periods,
thereby ensuring high network utilization.

Protocols like CSMA, TDMA and even adaptive protocols
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Figure 2: NoC Architecture with Wireless Links

cannot optimize for such situations as they would treat every
packet in the network as equally important, thus sharing the
channel equally between BFS and CC here. This would result
in core 16 clearing its barrier much later, thus harming end-
to-end execution time. However, since NeuMAC is trained
to directly optimize the high-level objective of end-to-end
execution time instead of network metrics like latency, it is
able to learn to prioritize the packets of some cores over
others. In this example, with NeuMAC’s protocol, core 16
arrives at its barrier 2.4× faster as compared to CSMA, and
3.75× faster as compared to TDMA. This in turn leads to an
overall improvement in execution time of 43% and 81% over
CSMA and TDMA respectively.

3 Background

3.1 Wireless Network on Chip
Network-on-Chip (NoC) architectures have played a funda-
mental role in scaling the number of processing cores on
a single chip which led to unprecedented parallelism and
speedups in execution time [30,75,88,94]. Prior to NoC, mul-
ticore processors used a shared bus architecture which had
very poor scalability. As the core count increases, the power
required to drive the bus grows quickly due to the increase
in the capacitance of the bus wires [15]. The bus also starts
to suffer from large latency [74]. As a result, shared buses
become impractical for designs beyond 16 cores [59].

Unlike a shared bus, wired NoCs use packet-switched com-
munication with every core connected to a router as shown in
Fig. 2 [78]. As the packet moves from source to destination,
it is buffered, decoded, processed, encoded, and retransmit-
ted by each router along the multi-hop path. However, as
we scale the number of cores, computation slows down due
to the high communication latency and overhead of the net-
work [10, 57, 97]. This problem is known as the “Coherency
Wall” [58], where the execution on each core is faster than the
NoC’s ability to ensure that the memory caches of the cores
are coherent. Hence, the speedup gained by parallelism and
multithreading is outweighed by the network’s communica-
tion cost for keeping the caches coherent [5, 8, 58].

Recent work proposes to augment NoC multicore pro-



cessors with wireless links for communication between the
cores [7, 9, 54, 65, 91]. Wireless links benefit chip multicore
processors in two important aspects:1

• Lower Latency: Wireless enables every core to reach ev-
ery other core in just a single hop. In contrast, in a purely
wired NoC, a packet must go through multiple NoC routers,
incur queuing, transmission, and processing delay at every
hop which ends up taking multiple execution cycles [1].
Hence, as the number of cores increase, wireless can de-
liver packets with significantly lower latency and within
the tight timing requirements of execution on the cores [1].

• Broadcast: Since wireless is a broadcast medium, trans-
mitted packets are directly heard at all other cores which
significantly simplifies the NoC’s ability to ensure the co-
herency of the memory caches. In particular, any local
changes in the memory cache of a core can instantaneously
be replicated at all other cores through a single packet trans-
mission [38]. In contrast, today’s wired NoCs must send
multiple parallel unicast/multicast transmissions to syn-
chronize the caches, which leads to a large overhead that
scales poorly as the number of cores increases [8, 50, 56].

Several wireless NoC transceivers and antennas have been
built and shown to deliver 10 to 50-Gbps links while im-
posing modest overhead (0.4–5.6%) on the area and power
consumption of a chip multiprocessor [31,39,93,99,100]. The
wireless transceivers typically operate in the millimeter-wave
and sub-THz spectrum which enables miniaturizing the anten-
nas and avoids antenna coupling. Antennas are either planar
integrated dipoles or vertical monopoles drilled through the
silicon die [24, 86]. The wireless signals propagate through
the enclosed chip packaging and attenuate by few tens of
dBs [85, 86]. On-Off Keying (OOK) is the choice of modula-
tion since it requires significantly lower powerand achieves
a very low Bit Error Rate (BER) for on-chip wireless links
[39, 60, 99]. We adopt the collision and packet loss handling
protocols from past work [1, 38].

3.2 Deep Reinforcement Learning

We provide a brief primer on RL based on [84]. In RL, an
agent interacts with an environment, and learns to generate a
policy directly from experience as shown in Fig. 3. In our case,
NeuMAC is the agent, the multiprocessor is the environment,
and the generated MAC protocol is the policy.

• Agent & Environment: The agent starts with no apriori
knowledge. Then, at each time step t, the agent observes the
state st of the environment, and takes an action at . Following
the action, the environment transitions to state st+1, and the
agent receives a reward rt . The state transitions and the re-
wards are stochastic and assumed to have the Markov property.

1Note that other technologies such as optical links have poor perfor-
mance [2, 9, 37].
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Figure 3: Deep Reinforcement Learning Framework.

During training, the agent gains experience by taking actions
and observing the state transitions and rewards in response to
these actions. The actions the agent takes aim to maximize
an objection function known as the expected cumulative dis-
counted reward: E

[
∑

∞
t=0 γtrt

]
, where γ ∈ (0,1] is the discount

factor for future rewards.

• Policy: The action at picked by the agent is dictated by a
policy π, where π represents a probability distribution over the
space of actions and states : π(s,a)→ [0,1]. That is, π(s,a)
is the probability that action a is taken in state s by the agent
following policy π. For most large-scale practical problems,
the policy π is modeled with a Deep Neural Network (DNN),
as they are very powerful function approximators. The DNN
is parameterized by θ, which are the learnable parameters of
the model, and we represent the policy as πθ(s,a). θ is also
referred to as the policy parameters.

• Training: The objective of training in RL is to learn the
policy parameters θ so as to maximize the expected cumu-
lative reward received from the environment. Towards this
end, we focus on a class of RL algorithms called policy gradi-
ent algorithms, where the learning takes place by performing
gradient descent on the policy parameters. In practice, the
training methodology follows the Monte Carlo method where
the agent samples multiple trajectories obtained by following
the policy πθ, and uses the empirically computed cumulative
discounted reward as an unbiased estimator of the expected
value. This empirical value is then used to update the pol-
icy parameters via the gradient descent step. The result is a
known algorithm: REINFORCE which we use in this paper.
For more details, we refer the reader to [84].

4 NeuMAC Design

4.1 Overview

NeuMAC consists of two components. (1) A standard NoC
multicore processor with N cores where each core has been
augmented with a wireless transceiver as shown in Fig. 2. (2)
A NeuMAC agent that periodically generates new medium
access policies based on the traffic patterns it sees on the wire-
less NoC. The agent is housed in a simple neural accelerator
that resides on the same chip with a small area and power
overhead (See Appendix A for hardware details).

Fig. 4 shows the working of NeuMAC. The NeuMAC agent
is equipped with a wireless transceiver through which it can
listen on the channel, and also send protocol updates to the
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cores. The NeuMAC agent listens on the wireless channel
for a period called the “Listening Interval” where it collects
traffic data about core transmissions, collisions and idle slots.
It, then, feeds this data to a trained RL neural network that im-
plicitly predicts the future traffic patterns and generates a new
policy to be used as the medium access protocol during the
next Listening Interval. NeuMAC updates the policies at the
cores by sending an update message with the policy parame-
ters. Each Listening Interval and Update Interval constitute a
single step in the RL framework.

One point to note is that, although the cores share a com-
mon clock for their normal CPU operation2, it is infeasible
to coordinate medium access for each clock cycle through a
shared centralized scheduler, since the exchange of control
messages between the cores and the scheduler would itself
incur latencies of multiple clock cycles. [6]

4.2 Design Challenges

The above design is governed by several strict timing and
resource constraints of wireless NoC. In particular, it must
address the below challenges while at the same time ensur-
ing NeuMAC’s ability to generate versatile and expressive
medium access protocols to service the dynamic and fast-
varying traffic patterns.

C1. Centralized Agent: Ideally, we would have wanted Neu-
MAC to adopt a distributed design where every core is
equipped with its own NeuMAC agent that dictates its own
MAC protocol. However, introducing a neural accelerator at
every core would be prohibitively expensive in terms of area
and power. Hence, NeuMAC is constrained to a centralized
approach with a single agent.

C2. Cores to Agent Communication Overhead: To obtain an
accurate view of traffic patterns, NeuMAC must obtain the
packet injection rate and buffer occupancy across time at
each core in the network. However, relaying this information
from every core back to the centralized agent would result in
huge communication overhead. Instead, NeuMAC leverages
the broadcast nature of wireless networks to collect traffic
patterns simply by listening for transmissions on the wireless
medium. While the collected information is less expressive
than the history of packet injection and buffer occupancy at
each core, it retains sufficient information to allow NeuMAC

2 Unlike a distributed system of machines, a shared clock for a manycore
system is feasible since all cores are housed on the same silicon die.

to predict traffic patterns while at the same time completely
eliminating communication overhead from the cores to the
centralized agent.

C3. Agent to Cores Communication Overhead: One option
is to have the agent tell each core whether to transmit or
not at every CPU clock cycle. However, this would require
running inference and relaying information to each core at
every clock cycle which would lead to prohibitively large
communication overhead. To address this, NeuMAC amor-
tizes the communication overhead (Update Interval) from
the agent to the cores by performing inference once every
Listening Interval spanning thousands of clock cycles. In
our implementation, we use an interval of L =10,000 clock
cycles (10µs) which is large enough to reduce the overhead
to less than 6% and small enough to ensure that the traffic
patterns remain stable and can be learned by the RL agent.

C4. Complexity of the MAC Policy: NeuMAC generates a
policy that dictates the MAC protocol of each core for the
following Listening Interval. Ideally, NeuMAC would gen-
erate a deterministic transmission schedule for every core to
follow. Such a design is extremely expressive since it could
allow NeuMAC to generate any possible schedule. However,
such a design would require the RL deep neural network
to output an action space with N×L dimensions where N
is the number of cores and L is the number of clock cycles
(e.g. 10,000). Such a neural network would be unsuitable
for a resource-constraint setting like NoC. To address this,
we carefully design a parameterized MAC policy that can
support a flexible range of medium access protocols while
ensuring that the neural network only needs to output a few
parameters to dictate the desired policy.

C5. Reward engineering: The reward during training needs
to be designed so as to guide NeuMAC towards the high-
level objective. While most past work on learning link-layer
and network-layer protocols only use network-level metrics
such as throughput and latency for the reward signal, in our
case we need to choose domain specific rewards so as to
optimize for the end goal, which is application execution
speedup on the multicore.

C6. Low Footprint Neural Network: NeuMAC’s neural net-
work must adhere to strict timing, power and area constraints
of a chip multiprocessor. Thus, our design cannot simply
adapt a known RL model as it would require large amounts
of memory and computational resources, and would also suf-
fer high inference latencies (tens of milliseconds) [46, 63].



To address this, we design NeuMAC’s RL framework such
that the state space (input to the neural network) and action
space (output) scale linearly with the number of cores. Our
design ensures that NeuMAC is expressive enough while at
the same time can operate under NoC’s resource constraints.

4.3 NeuMAC’s MAC Policy
As discussed above, the MAC policy that the agent dictates
to the cores should have the following properties:

1. The policy should span a wide range of protocols, all the
way from TDMA to CSMA.

2. It should be possible to describe the policy with few pa-
rameters to reduce the communication overhead and the
output of the neural network.

3. It should allow for a simple neural network architecture to
learn a mapping from observed traffic patterns to the most
efficient MAC protocol.

In order to achieve these properties, we adopt a two-layer
protocol design. The first layer consists of a deterministic
underlying TDMA schedule, where each core is assigned a
unique time slot for transmission in a round-robin fashion. For
example, for time slots j ∈ [1, · · · ,L], core i is assigned the
slots { j | j mod N = i}where N is the number of cores. The
second layer consists of a probabilistic transmission sched-
ule like CSMA, where each core is assigned a contention
probability. Specifically, during its assigned time slot, core i
transmits on the channel with probability 1 if it has an out-
standing packet in its buffer. During other cores’ assigned
time slots, core i can transmit with probability pi. In the event
of a collision, exponential backoff is implemented by halving
pi of the colliding cores similar to CSMA. On the other hand,
if a transmission is successful, pi is reset to it’s initial value.

To generate this policy for an NoC with N cores, the RL
neural network needs to output an action space that can be de-
fined as at = [a1,t ,a2,t , . . . ,aN,t ] where ai,t ∈ [0,1] represents
the initial contention probability of core i during “Listening
Interval” t (i.e., time step t in the RL framework). The con-
tention probability of core i is then initialized as pi = ai,t .
Different choices of at result in different protocols on the
multicore. For instance, setting ai,t = 0 for all i results in
a simple TDMA protocol since every core only transmits
on the channel during its assigned slot. On the other hand,
ai,t = c > 0 for all i mimics a CSMA-like protocol with vary-
ing degrees of aggressiveness on the channel. The pseudo
code for NeuMAC’s protocol is presented in Alg. 1.

The above formulation satisfies our design objectives. First,
it enables NeuMAC to gracefully shift between a pure TDMA
and a CSMA scheme, while supporting all intermediate pro-
tocols. The design also gives the flexibility to control each
core individually, so that the NeuMAC can potentially in-
crease contention probabilities for cores that observe high
traffic intensity. Second, since the MAC protocol at core i is

Algorithm 1 NeuMAC Protocol
L← Number of Clock Cycles in Listening Interval
[a1,t ,a2,t , . . . ,aN,t ]← Action space generated by RL agent at time stept
[p1, p2, . . . , pN ]← [a1,t ,a2,t , . . . ,aN,t ]

At core i:
for j ∈ {1, · · · ,L} do

Bu f f eri( j)← Outstanding packet in the buffer for core i
if Bu f f eri( j) 6= /0 then

if j mod N = i then . TDMA Slot Assigned to Core i
Transmit with probability 1

else
Transmit with probability pi

if Transmission from Core i collides then
pi = pi/2

else
pi = ai,t

characterized by only one number (the contention probability
ai,t ), there is very small communication overhead during the
Update Interval, where the NeuMAC agent has to transmit a
single broadcast packet with N numbers. Each core, receives
the packet and extracts it own contention probability. Finally,
the design keeps the action space constrained and linear in
the number of cores which allows for a simple neural network
that can be easily trained and is more likely to converge.

4.4 RL Formulation and Training
Given the above design, we now formalize the state space,
reward, policy and training of NeuMAC’s RL framework.

• State Space Design: The NeuMAC agent takes state infor-
mation st as input and generates a MAC policy characterized
by the action space at described above. The state informa-
tion is generated purely by listening to ongoing transmissions
on the channel. As described earlier, this allows us to elim-
inate all communication overhead from the cores to the RL
agent. However, it only provides information about the ac-
tivity on the channel rather than the traffic injection into the
network. Moreover, in the event of a collision, NeuMAC can-
not know which cores attempted to transmit. Despite these
limitations, NeuMAC’s state space retains enough informa-
tion to infer traffic patterns. In particular, during each CPU
cycle, NeuMAC will either detect an idle channel, a collision,
or a successful transmission from some core i. We define our
state at time step t, st , as an (N+1)×1 vector that keeps track
of the number of successful transmissions from each core and
the number of collisions observed during the cycles in the RL
time step (Listening Interval). Specifically, the ith element of
st counts the number of successful packet transmissions by
core i, and the N + 1th element counts the number of colli-
sions. The number of idle slots is implicitly encoded in the
state since it is equal to L−∑

N+1
i=1 si,t where L is the number

of cycles in a Listening Interval. The state st is then used by
the NeuMAC agent to generate the MAC protocol policy for
the next time step.



• Reward Engineering: The reward signal is designed to
guide the agent towards policies that optimize for the desired
objective. Most past work that uses RL for learning network-
ing protocols employs network-level metrics like throughput
or latency as the reward signal. However, in our case, we need
the reward signal to directly represent our end goal, which is
to optimize for speedups in application execution time on the
multicore. While network-level metrics like throughput are
correlated to the execution time, they do not always capture
the intricate dependencies between the execution on threads
and packet delivery on the network. In Section 6, we see that
there are instances where a protocol performs significantly
worse in terms of average network throughput, but still has
better end-to-end application execution time.

As a result, we design our reward signal to reflect our
high level objective of minimizing application execution time.
Specifically, for each time step t, the reward is set to −Lt
where Lt represents the number of clock cycles where the
application was executing. Hence, for all but the last time
step, the reward signal rt is set to −L. For the last time step,
reward is set to −k, where k is the number of clock cycles
at which the application terminates execution. The intuition
behind this choice for the reward signal is as follows. Recall
that the objective of reinforcement learning is to maximize
the cumulative reward, i.e. −∑t Lt . This is equivalent to mini-
mizing ∑t Lt , which ultimately means the application utilizing
fewer CPU clock cycles for execution. While this choice of
reward signal does correlate with improving network-level
metrics such as packet latency and throughput, it is not the
central objective and thus it is possible that sometimes the
NeuMAC agent compromises on network performance for
improvement in execution time. Note that in our formulation,
we set the discount factor γ = 1.

• Policy: We represent our policy π as a deep neural network
(also called policy network) which takes as input the state st ,
and maps it to at in the action space. Note that in our problem,
the action space is continuous. In such cases it is common
to discretize the continuous action space a ∈ [0,1]N similar
to [52], and convert the problem into a classification problem
where the agent now chooses which combination of ai’s to
pick. However, an obvious issue with this approach is the
curse of dimensionality. Even with 2 quantization levels for
each ai, the total number of discretized actions in a ∈ [0,1]N

becomes 2N . Thus the neural network architecture needs to
have an output dimension of 2N which becomes infeasible for
our resource constrained environment.

Therefore, we avoid discretizing the action space and, in-
stead, model the actions as following a Gaussian distribution
with mean µ and variance σ. The deep learning model is now
trained to output the parameters of this Gaussian distribution,
as described in [84]. The NeuMAC agent picks the action for
the next time step simply by sampling from the distribution
N (µ,σ). In NeuMAC, the policy network outputs N param-
eters µi corresponding to N distributions, one for each core

i. The variance σ is set to 1 at the start of training to encour-
age exploration, and annealed down to 0.05 as NeuMAC’s
policy improves. Finally, during inference, the variance σ is
set to 0.05, the action ai,t for core i is sampled from the cor-
responding distribution N (µi,σ), and clipped to ensure that
ai,t ∈ [0,1].

• Training Algorithm: We train our policy network end-to-
end in an episodic setting. In each episode, an instance of
an application is executed on the multicore, and the wireless
network on chip follows the MAC protocol as dictated by the
NeuMAC’s policy network. The episode terminates when the
application completes execution. In order to learn a policy that
generalizes well, we train the network for multiple episodes
with each episode observing a different application trace. For
every episode, we run M separate Monte Carlo simulations to
explore the probabilistic space of possible actions using the
current policy, and use the resulting data to improve the policy
for all applications. Specifically, we record the state, action,
and reward information for all time steps of each episode.
We then use this data to train our policy using the popular
REINFORCE algorithm along with a baseline subtraction
step, as described in [67].

4.5 Neural Network Architecture
Our network is composed of three fully connected layers with
128, 128 and 64 neurons respectively. The first two layers are
followed by ReLU activation units, whereas the final layer
is followed by a sigmoid unit to output the probability val-
ues ai’s between 0 and 1. During training, the weights use
16 bit floating points. Once trained, the learned weights are
quantized to 8 bit fixed points for the inference stage. This is
standard for run-time optimization in deep learning [53], and
does not adversely affect performance.

The proposed fully connected network architecture here is
simple and ties in very well with our design objectives. Recall
that NeuMAC performs one inference step every 10,000 CPU
clock cycles, and we require the inference step to add little
overhead. The architecture here is composed of 32,000 learn-
able parameters, and at 8-bit quantization, it can be stored in a
32 KB on-chip SRAM cache to ensure fast memory accesses.
Since inference latencies in most neural network architectures
tend to be memory bound (including Fully connected and
CNN architectures) [26, 53], improving memory access laten-
cies plays a big role in speeding up overall inference time.
Further, the simple structure of a fully connected network
allows for straightforward memory access patterns, since the
inference step is a straightforward computation amounting
to consecutive matrix multiplications. In Appendix A we
provide energy-delay characterization of this architecture.

One point to note is that NeuMAC’s deep RL agent is
trained offline, and does not undergo any training during run-
time since training is resource intensive. However, retraining
can be triggered periodically depending on performance re-



Name Description
BFS [13] Breadth-first search
Bodytrack [20] Tracking a body-pose through images
Canneal [20] Compute optimal routing for gates on a chip
CC [13] Compute connected components of a graph
Pagerank [13] Compute pagerank for nodes in a graph
SSSP [13] Single source shortest path
Volrend [96] Rendering of 3D objects
StreamCluster [20] Cluster streams of points
Community [13] Compute modularity of a graph

Table 1: Summary of Applications

quirements and this retraining will be performed offline. The
updated model parameters can then be migrated to the neural
hardware accelerator by simply rewriting the SRAM memory
blocks on the accelerator corresponding to the neural net-
work’s model parameters. This update can happen through
the multicore’s wireless NoC communication channel and
won’t add much overhead since our model is restricted to just
32,000 parameters, each of 8 bits.

5 Implementation
Evaluation Environment: We evaluate NeuMAC on a cycle-
level execution-driven architectural simulator, Multi2sim [87].
Multi2sim is a popular end-to-end heterogenous system sim-
ulator tool used in the architecture community to test and
validate new hardware designs with standard benchmarks. We
evaluate NeuMAC for multicores with core count n = 64 at
22nm technology running at 1GHz. We use the same archi-
tecture parameters as [38]. We augment Multi2sim with an
on-chip wireless network that accurately models transmis-
sions, collision handling and packet losses.

While NeuMAC could be potentially trained directly us-
ing multi2sim, it is extremely slow and would result in pro-
hibitively large training times. Therefore, for NeuMAC’s
training phase, we use a light-weight custom-built Wireless
Network-on-Chip simulator along with traffic traces captured
from Multi2sim. Our custom simulator models the data de-
pendencies and synchronization primitives (such as locks and
barriers) in the applications, so as to faithfully mimic the
behavior of multi-threaded applications.

In order to evaluate NeuMAC’s generalizability and effec-
tiveness for a broad use case, we test NeuMAC on 9 differ-
ent applications chosen from diverse domains such as graph
analytics, vision, and numerical simulations (Summary in
Table 1). Additionally, we also test with multi-application
jobsets where different groups of cores are executing different
multithreaded applications. While training is performed using
our custom simulator, we evaluate NeuMAC using Multi2sim.
We integrate Multi2sim with NeuMAC’s trained RL agent,
and our evaluations account for the RL agent’s DNN inference
latency and communication latency between the multicore
and RL agent.

Training and Evaluation Details: For each application, we

collect 500 different traces, each generated with different in-
puts to the applications in order to capture the variations
between different runs. We evaluate NeuMAC using k-fold
cross validation, where we train the model on 8 applications
and test performance on the ninth application. Thus, we en-
sure that the NeuMAC agent is never explicitly trained on
the application it is being evaluated on, and our results show
that NeuMAC can generalize well to different applications.
We train NeuMAC for a total of 4000 episodes, and for each
episode we run M = 16 Monte Carlo simulations in parallel.
The policy network is trained using ADAM optimizer [55]
with a learning rate of 0.001.

6 Evaluation Results

6.1 Baselines

We compare with the following baselines:

(1) CSMA with Exponential Backoff: CSMA/CA protocol
from 802.11 networks, with backoff window ranging from 1
to 1024. [1, 71] use CSMA MAC in the context of WNoCs.

(2) TDMA: Cores are allocated fixed slots for transmission
in round-robin fashion. [5, 34] evaluate TDMA for WNoCs.

(3) Switch-thresh: [38, 65] propose a protocol that switches
between a static CSMA and a static TDMA protocol based on
per-core preset thresholds for channel activity and buffer occu-
pancy. The optimal threshold values vary across applications
and we choose values that are best in the average case.

(4) Optimal CSMA Algorithm: There is a large body of
work that designs throughput optimal CSMA algorithms.
However, most of these works are theoretical, and make sim-
plifying assumptions like ignoring collisions or static traffic
arrival rates, due to which they perform significantly worse
than even regular CSMA protocols in practice. Among the
optimal CSMA algorithms we tested, we found queue-based
algorithms to perform best. We implement an extension of the
popular Q-CSMA algorithm [79], where each node uses its
buffer queue buildup to infer its transmission aggressiveness
on the channel. While this algorithm is not truly distributed
in nature, we ignore the global communication overheads in
evaluations to favor the baseline performance.

(5) Wired Baseline: We also compare performance against
a purely wired baseline, where all cache coherency traffic is
serviced through the wired network-on-chip.

(6) Infinite Capacity Channel: We also compare Neu-
MAC’s performance against an oracle with infinite channel
capacity where the wireless medium can support multiple con-
current transmissions without suffering collisions, and every
packet can be transmitted immediately without any channel
contention delays. This baseline gives us an upper bound
on how much improvement in end-to-end execution time is
possible from improving the wireless NoC performance.
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Figure 5: Gains in Wireless Network Throughput. (y axis in logscale)

6.2 Quantitative Results

We first evaluate NeuMAC’s performance against baselines on
single application executions, followed by evaluations on the
more realistic scenarios where multiple applications are run-
ning on the multicore. We also test NeuMAC’s performance
under lossy network conditions, and conclude by presenting
scaling results where we demonstrate that NeuMAC’s gains
increase as the multicore scales to thousands of cores.

A. Single Application Wireless Network Performance:
We begin by evaluating the wireless network performance
against baselines along three metrics – (i) Wireless network
throughput, (ii) Packet latency on the wireless network, and
(iii) Number of collisions on the channel. We note that while
NeuMAC is not explicitly trained to optimize for network
metrics, their performance is correlated to faster execution
times on the NoC.

(i) Network Throughput: In Fig. 5, we plot the gains in
average network throughput achieved by NeuMAC against
the baselines. Compared to CSMA and TDMA, NeuMAC
achieves a mean improvement of 1.8× and 9.63× respectively
across the benchmarks, and a maximum improvement of 3.3×
and 32.1× respectively. TDMA has poor performance for av-
erage network throughput since cores have to wait for their
turn to transmit even when the traffic is sparse, which leads
to underutilization of channel.

Compared to Switch-thresh and Q-CSMA, NeuMAC
achieves a mean improvement of 1.2× and 1.33×, and a max-
imum improvement of 1.7× and 1.9× respectively. While
these protocols are improve over CSMA and TDMA, they
still cannot react and adapt quickly enough to accommodate
the fast changing traffic patterns on the multicore.

(ii) Packet Latency: In Fig. 6, we plot the CDF of packet
latency due to queuing in the Wireless Network-on-Chip
across all applications. It is interesting to note that while
at the tail TDMA performs better than CSMA, in the me-
dian case TDMA performs significantly worse than CSMA.
This is because the high packet latencies at the tail are due
to dense traffic in the network which TDMA is better suited
for, whereas at the median where traffic is less dense, TDMA
leads to much higher packet latencies. NeuMAC, on the other
hand, is able to adapt to all these different scenarios and pro-
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Apps CSMA Switch-thresh Q-CSMA NeuMAC
CC 75.30% 55.58% 76.24% 8.72%
BFS 50.42% 28.28% 49.57% 3.81%
Pagernk 77.36% 11.26% 77.79% 2.19%
SSSP 11.08% 9.48% 9.44% 8.88%
Volrend 44.17% 7.93% 46.11% 2.49%
Strmclstr 62.57% 19.21% 62.69% 31.24%
Canneal 2.55% 2.87% 2.09% 2.04%
Bdytrck 30.5% 29.06% 29.8% 28.87%
Cmmnty 46.76% 32.02% 49.24% 5.8%

Table 2: % of Collisions

vides an improvement in packet latency across all baselines.
Over CSMA and TDMA, NeuMAC improves median packet
latency by 4.11× and 9.18×, and improves 90th percentile
latency by 3.89× and 1.92× respectively. Over Switch-thresh
and Q-CSMA, the gains respectively are 4.66× and 2.56× at
the median, and 1.47× and 2.13× at 90th percentile.

(iii) Collisions on Wireless Channel: In Table 2 we show %
of collisions on the wireless channel across different bench-
marks. We omit TDMA here since TDMA by design does
not suffer from collisions. As observed, NeuMAC has signifi-
cantly fewer collisions than the CSMA algorithms. Switch-
thresh is the next best performing protocol, but NeuMAC in
most cases still has fewer collisions.

B. Single Application End-to-End Execution Speedup:
(i) Speedups over Purely Wired Network-on-Chip: In Table 3,
we show application speed-ups achieved by NeuMAC and
the Infinite Capacity baseline respectively, over the purely
wired NoC. NeuMAC can speed up benchmarks by up to
9.7× for StreamCluster and 6.53× for BFS, and on average
provides a speedup of 3.42× across benchmarks. Addition-
ally, we see that NeuMAC gets very close to the upper bound
of the speedup value, achieving up to 99.5% of the maximum
speedup possible in the case of BFS, and 98% of the maxi-
mum speedup possible on average. This result demonstrates
that NeuMAC is able to fully exploit the potential offered by
the wireless NoC.

(ii) Speedups over Baselines: Fig. 7 shows execution time
gains of NeuMAC over the baselines on the wireless NoC.
As can be observed, there is no one baseline protocol that
performs well across all applications. While in applications
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Figure 7: Execution Time Results (y axis in logscale)

Apps NeuMAC Inf. Cap. baseline % Achieved
CC 1.96x 2.06x 95%
BFS 6.53x 6.56x 99.5%
Pagerank 1.07x 1.11x 96.4%
SSSP 2.24x 2.25x 99.5%
Volrend 1.32x 1.33x 99.2%
Strmclstr 9.70x 9.77x 99.28%
Canneal 1.14x 1.15x 99.13%
Bodytrack 1.37x 1.38x 99.3%
Community 3.77x 3.82x 98.6%

Table 3: Speedups over Purely Wired Network-on-Chip.

like Pagerank, TDMA performs the best, in other applications
such as BFS it is significantly worse. NeuMAC, on the other
hand, performs well across all benchmarks. In Table 4, we
see that NeuMAC achieves a maximum of 69.18% speedup
over CSMA for CC and 274.56% speedup over TDMA for
Community, and compared to Switch-thresh and Q-CSMA,
NeuMAC offers speedups up to 37.09%-55.94%.

C. Multi-Application Jobs: In Table. 5, we present execu-
tion time speedup results for multiapplication runs on the
multicore. For each run, we randomly choose one application
among the 9, and execute it using either 4, 16 or 32 threads.
We choose a sufficient number of applications such that all
64 cores are utilized, and in total we test on 100 different
multiapplication jobsets. Note that the NeuMAC agent was
never explicitly trained on such multiapplication traffic traces.
From Table. 5, we can see that NeuMAC’s gains increase over
the baselines compared to single benchmark experiments (Ta-
ble. 4), and goes as high as 6.15× (515.04%) speedup over
TDMA. These higher gains in multiapplication jobsets can be
attributed to the more complex nature of packet dependencies
between threads, which NeuMAC can exploit to further speed
up execution time as illustrated in Section 2.

C. Lossy Networks: To evaluate NeuMAC’s robustness to
varying channel conditions, we conduct experiments in lossy
network settings. We vary the packet loss rates in the wireless
NoC from 0% up to 10%, and in the event of a loss, the
packet is retransmitted. In Fig. 9, we compare the average
application speedup achieved over the baselines as the loss
rate increases. We observe that NeuMAC is able to generalize
very well to varying channel conditions and loss rates, and

Speedups CSMA TDMA Switch-thresh Q-CSMA
Max 69.18% 274.56% 37.09% 55.94%
Min 1.26% 4.88% 0.63% 1.12%

Mean 18.21% 46.90% 9.73% 11.94%

Table 4: Summary of Execution Time Speedups by NeuMAC. The per-
application speedups are shown in Fig. 7.

Speedups CSMA TDMA Switch-thresh Q-CSMA
Max 93.18% 515.04% 48.16% 26.78%
Min 13.3% 24.72% 4.41% 5.82%

Mean 33.93% 166.32% 19.97% 17.48%

Table 5: Summary of Execution Time Speedups by NeuMAC for Multiap-
plication runs
can maintain the same gains over the baselines throughout.
Note that NeuMAC was never trained explicitly for lossy
network settings. Despite this, it is able to generalize since it
can implicitly infer the channel conditions from the channel
activity like increased number of collisions.

We also test NeuMAC’s sensitivity to errors in the ob-
served state caused by packet losses at the NeuMAC agent’s
transceiver during the "Listening Interval". We conduct ex-
periments where we vary the packet loss rate from 0% to 2%
in order to introduce noise in the observed state. We find that
even under 2% loss rate, NeuMAC’s suffers a median per-
formance degradation of only 0.85% across all benchmarks
compared to its performance with perfect state information.

D. Scaling Trends: We believe that a learning based approach
like NeuMAC can greatly benefit the wireless NoC perfor-
mance as the number of cores scale to thousands of cores. To
demonstrate this we show the gains that NeuMAC achieves
over baseline protocols for different metrics as the cores vary
from 4 to 1024 in Fig. 8. Since multi2sim and other archi-
tectural simulators cannot scale beyond a hundred cores, we
evaluate these results in our custom simulator by training a
separate NeuMAC model for each core count. From Fig. 8,
we can see that NeuMAC’s gains over the baselines scale
favorably with the number of cores. This is because NeuMAC
is able to generate fine-grained MAC protocols by controlling
the actions of each core individually, and thus can generate
highly optimized protocols that improve substantially upon
the baselines at high core counts.

7 Related Work
A. Wireless Network-on-Chip Protocols: The majority of
past networking research on wireless NoC does not leverage
the broadcast nature of wireless to enable instantaneous cache
synchronization and instead focuses on using wireless only
between far apart cores to reduce the latency. These comple-
mentary works focus on problems related to optimizing net-
work topology [32,35,105], packet routing [61,90,106], flow
control [18,42] and improving the reliability of the PHY layer
for far apart cores [76, 85, 86]. However, such designs have
limited gains over wired NoCs [4]. More recent work in archi-
tecture research exploits the broadcast nature of wireless to
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Figure 8: Scaling Trends in NeuMAC’s Gains for (a) Wireless Network Throughput (b) Median Packet Latency and (c) 90th Percentile Packet Latency
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Figure 9: Effect of Packet losses on NeuMAC’s application speedup per-
formance compared to Baselines.

boost the performance of wireless enable NoCs [34,38,65,71].
These systems either use contention-free mechanisms such
as token passing [34] or contention-based mechanisms such
as carrier sense with exponential backoff [29, 71]. The clos-
est to our work are [38, 65] which attempt to adapt to traffic
patterns by switching between a CSMA or a token passing
protocol based on a preset threshold. However, hand tuning
the threshold values is a challenging task and does not pro-
vide the flexibility and expressibility of NeuMAC to support
complex and highly variable traffic patterns.
B. Network-on-Chip Technologies: Past work on wired
NoCs proposes the use of deep learning and RL to learn
efficient packet routing protocols [98], learn memory access
patterns to reduce cache misses [103], and reduce static and
dynamic power consumption on an NoC [36]. To the best of
our knowledge, ours is the first work that attempts to exploit
deep reinforcement learning techniques to generate medium
access protocols for Wireless NoCs.
C. Deep Learning in Wireless Networks: Deep RL has re-
cently been applied in wireless networks to optimize duty
cycling in sensor networks [64], resource allocation in cel-
lular networks [22, 27], dynamic spectrum access [72, 92],
rate adaptation in CSMA networks [69],and control policies
at the PHY layer [52]. [104] provides an extensive survey of
deep learning in wireless networks. The closest to our work
are [14,16,19,101] which use reinforcement learning to mod-
ify the backoff parameters in CSMA or decide whether to
transmit or not for every packet at every time step. However,
such designs are not applicable in the context of wireless
NoCs owing to the unique set of constraints imposed by the
NoC, such as the much smaller time-scale of operation render-
ing neural network inference per transmission slot infeasible,
the limited SRAM memory to store model parameters and the
enormous action space to explore. These constraints require

significant redesign to NeuMAC’s deep RL framework where
it has to now generate high-level, versatile and adaptable pro-
tocols that can be deployed for thousands of clock cycles,
and generating such protocols cannot be reduced to a simple
classification task per transmission-slot (e.g. transmit or not).

8 Limitations and Discussion
Some points are worth noting: First, given the enormous costs
and engineering efforts involved in prototyping a full chip
with integrated processors, memory, and NoC, it is outside the
scope of this work to implement NeuMAC in hardware. As a
result, we evaluate NeuMAC on a full-system cycle-accurate
architectural simulator, as is the norm among computer archi-
tecture researchers. These full-system simulators exhaustively
model all components of a CPU and also ensure that all timing
dependencies are simulated accurately [87]. As a result, the
trends and insights obtained from such architectural simula-
tions often carry over to full fledged prototypes. Moreover,
the wireless channel in this WNoC application domain is in
fact very stable as opposed to WLAN channels which are
extremely dynamic. This is because the multicore is isolated
in a chip package, and the wireless channel can be precisely
measured and characterized, thus allowing compensation for
multipath fading and other artifacts. As a result, the wire-
less BER in these environments can be as low as 10−16 [33],
making such a simulation based evaluation representative.

Second, in parallel programming for multicore processors,
programmers today try hard to avoid broadcast transmissions
as the overhead of running the cache coherency protocol is
high. With wireless NoC, the overhead of broadcast traffic is
now limited which opens the door to rewriting applications
in a manner that embraces broadcast, and can in turn benefit
even more from an adaptive protocol like NeuMAC.

Lastly, in this paper we focus on the MAC layer since it is
considered a roadblock to realize the full potential of wireless
NoCs. However, studying the challenges and opportunities at
the other layers such as PHY remains exciting and promising
avenue which we leave for future work.
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A Energy and Latency Overhead Characteri-
zation

It is widely acknowledged that deep learning inference has
high latency and energy overheads. However, since NeuMAC
needs to optimize the performance of a multicore CPU, it
needs to operate at very small time scales. As a result, it is
imperative that NeuMAC’s inference step be efficient in time
and energy. In this appendix, we characterize the overheads
of running inference on NeuMAC’s Deep RL agent.

Towards this end, we design an illustrative hardware macro
for NeuMAC’s neural accelerator (shown in Fig. 10). The
trained quantized weights of NeuMAC’s network are stored



in the 32 KB on-chip SRAM. The primary compute elements
in the macro are the (i) 128 element 8-bit multiplier, that can
perform 128 parallel multiplications of 8-bit numbers, (ii)
followed by a 7-layer carry save adder tree, which can add up
to 128 8-bit numbers. Thus, the multiplier block and adder
tree block together can implement either one 128 dimensional
dot product, or two 64 dimensional dot products in a one iter-
ation. The ReLU non-linear activation is implemented using
comparators, which finally writes the result into an output
buffer. It is important to note that this hardware macro is sig-
nificantly simpler than a full scale neural network accelerator,
such as [53].

Next, we elaborate on the pipeline for computing one infer-
ence step on NeuMAC’s RL agent. Note that computing the
value of one element in the first hidden layer of NeuMAC’s
neural network requires one 64 dimensional dot product3.
Therefore, computing the values of all elements in the first
hidden layer requires a total of 128 counts of 64 dimensional
dot products. Similarly, computing the values at the second
hidden layer requires 128 counts of 128 dimensional dot prod-
ucts, and computing the final layer requires 64 counts of 128
dimensional dot products. Hence, to compute one inference
step in NeuMAC’s deep network, we need to perform a total
of 192 counts of 128-element dot products, and 128 counts
of 64-element dot products. Further, since we can implement
two 64-element dot products in parallel, one inference step
requires an equivalent of 256 counts of 128 dimensional dot
products to compute the output. Using this above macro de-
sign along with conservative and widely accepted hardware
estimates, we next show that the design of NeuMAC’s neural
network architecture adds only marginal overheads, allow-
ing it to operate under the resource constrained setting of a
wireless NoC.

Latency Overhead: Here we estimate the latency of comput-
ing one inference step on NeuMAC’s RL agent. The memory
array is organized as 16 blocks of 64 by 256 memory elements,
making a total of 32 KB storage. For 45nm technology, read
access time from such memory sizes can be conservatively
estimated to be around 2 ns [95]. Similarly, a 32-dimensional
dot product can be computed within 2 ns [44]. Hence, we
pipeline the data flow in three stages, first after the memory
read, second after adding the outputs of 32 multipliers, and
third at the output of the comparator bank. Hence, each stage

3Although NeuMAC’s input has 65 elements, for simplicity sake we
perform calculations with 64 element input.

4Our CPU clock is 1 GHz.

has a maximum latency of 2 ns. As a result of such pipelining,
one 128 element dot product is computed every 2 ns, that is,
every 2 clock cycles4. As noted previously, one inference step
requires 256 counts of 128 dimensional dot products. Hence,
the total latency for one inference step is 256× 2 = 512 ns
(512 clock cycles). This inference latency of 512 cycles re-
sults in a small overhead of less than 6% per time step in
our RL formulation. One point to note is that, the final deep
network output is quantized to 8 bits. Hence, the sigmoid fil-
ter after the last layer can be implemented via a 256 element
look-up table at a negligible latency overhead.

Energy Overhead: Next, we estimate energy consumption
of the hardware macro. We use the energy values from the
widely-cited paper [48], which approximately characterizes
energy consumption of various compute elements and mem-
ory accesses. The dominant energy consumption steps are the
reads from the memory array and the computations on the
MAC (Multiply-ACcumulate) unit. From [48], 8 bit multi-
plies consume 0.2 pJ, and 8-bit additions consume 0.03 pJ.
One 128 dimensional dot product on the MAC unit involves
128 multiplications and 127 additions. Thus the total energy
comes to 29.41 pJ. Memory reads of 64 bits from 2 KB mem-
ory blocks requires 5 pJ. Thus, the 128 bit memory reads for
each dot product requires 10 pJ. As a result, one 128 element
dot product on the hardware accelerator requires 39.41 pJ, and
with 256 counts, the energy consumed for a single inference
step is 10088.96 pJ. Given that we require one inference ev-
ery 10,000 ns, the neural accelerator consumes approximately
only 1 mW of power on average. In comparison, a single
transceiver on the multicore consumes 16 mW [38]. Lastly,
note that the numbers in [48] are at 45 nm technology, so 1
mW is a conservative estimate.

Area Overhead: Lastly, the area overhead of the hardware
macro is small. Since area is dominated by memory, the 32
KB of SRAM and few registers in the hardware accelerator
impose a small overhead in comparison to the 512 KB of
cache memory at each of the 64 cores. Thus we envision that
such a hardware macro can reside on the same die and share
the same clock as the multicore processor.

Thus, even a simple accelerator like the one demonstrated
in Fig. 10 can enable NeuMAC’s agent to operate under the
resource constrained setting of a wireless NoC. Note that we
do not employ any other advanced hardware optimization
techniques and rely on reported hardware numbers that are
widely accepted rather than the state-of-the-art today.


	Introduction
	Motivation and Insights
	Background
	Wireless Network on Chip
	Deep Reinforcement Learning

	NeuMAC Design 
	Overview
	Design Challenges
	NeuMAC's MAC Policy
	RL Formulation and Training
	Neural Network Architecture

	Implementation
	Evaluation Results
	Baselines
	Quantitative Results

	Related Work
	Limitations and Discussion
	Energy and Latency Overhead Characterization

