Replica: A Wireless Manycore for
Communication-Intensive and Approximate Data

Vimuth Fernando Antonio Franques

University of lllinois ~ University of Illinois

at Urbana-Champaign at Urbana-Champaign
wv2@illinois.edu franque2@illinois.edu

Abstract

Data access patterns that involve fine-grained sharing, multi-
casts, or reductions have proved to be hard to scale in shared-
memory platforms. Recently, wireless on-chip communica-
tion has been proposed as a solution to this problem, but a
previous architecture has used it only to speed-up synchro-
nization. An intriguing question is whether wireless commu-
nication can be widely effective for ordinary shared data.

This paper presents Replica, a manycore that uses wire-
less communication for communication-intensive ordinary
data. To deliver high performance, Replica supports an adap-
tive wireless protocol and selective message dropping. We
describe the computational patterns that leverage wireless
communication, programming techniques to restructure ap-
plications, and tools that help with automation. Our results
show that wireless communication is effective for ordinary
data. For 64 cores, Replica obtains a mean speed-up of 1.76x
over a conventional machine. The mean speed-up reaches
1.89x if approximate-computing transformations are enabled.
The average energy consumption is substantially reduced
by 34% (or 38% with approximate transformations), and the
area increases only modestly.

Keywords Approximate; Multicore; Parallelism; Wireless

ACM Reference Format:

Vimuth Fernando, Antonio Franques, Sergi Abadal, Sasa Misailovic,
and Josep Torrellas. 2019. Replica: A Wireless Manycore for
Communication-Intensive and Approximate Data . In 2019 Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS °’19), April 13-17, 2019, Providence, RI, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3297858.3304033

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6240-5/19/04...$15.00
https://doi.org/10.1145/3297858.3304033

Sergi Abadal

Universitat Politécnica University of Illinois
de Catalunya

abadal@ac.upc.edu

Sasa Misailovic Josep Torrellas
University of Illinois
at Urbana-Champaign at Urbana-Champaign

misailo@illinois.edu torrella@illinois.edu

1 Introduction

Data access patterns where multiple threads interleave reads
and writes to the same set of variables in a fine-grained man-
ner and without much per-thread locality do not scale well in
shared-memory multiprocessors. They create many network
messages, inducing communication bottlenecks. To alleviate
this problem, commercial vendors (e.g., [21, 29, 34, 53]) and
researchers (e.g., [12, 28, 32, 36, 46, 56, 62, 68]) have proposed
various hardware techniques. They include new synchroniza-
tion and cache coherence protocol improvements, special
networks, and new communication technologies such as
optics and transmission lines.

Recently, on-chip wireless communication has emerged
as a promising alternative that supports fine-grained data
sharing with low-latency, and is broadcast-friendly [3, 23, 26,
27]. In this environment, broadcasting a short message of 80
bits takes about 4 ns, which is about two orders of magnitude
lower than in conventional on-chip networks. For example,
the recent WiSync manycore [3] augments each core with
a small antenna and a transceiver. It supports low-latency
implementations of synchronization primitives, such as locks
and barriers. WiSync stores the state of synchronization
variables in a small, per-core Broadcast Memory (BMem)
that has identical contents in all of the cores. Writes to the
BMem are broadcasted, updating all the BMems at the same
time, while reads are satisfied from the local BMem.

While WiSync shows the attractiveness of on-chip wire-
less communication, it is only tailored to speed-up synchro-
nization operations. An intriguing question is whether the
wireless communication and BMem support can be used to
speed-up transfers of ordinary data.

Using wireless communication for ordinary data faces two
fundamental challenges: the bounded size of BMem and the
limited bandwidth of the wireless communication channel.
WiSync does not completely experience these challenges,
as the synchronization variables typically fit in the 16KB
BMem and do not consume much of the wireless channel
bandwidth. In contrast, ordinary data does not fit in BMem,
and its frequent updates may cause contention in the wireless
channel. It is therefore necessary to judiciously select the
subset of the data that will benefit the most from the wireless
communication, and place it in BMem.

https://doi.org/10.1145/3297858.3304033
https://doi.org/10.1145/3297858.3304033

In this paper, we present Replica, a manycore architecture
and software interface that enables efficient use of wire-
less communication for ordinary data. We tailor Replica to
speed-up communication-intensive shared data — whose ac-
cesses typically induce substantial overheads in standard
cache hierarchies. Our analysis presents several common
communication-intensive patterns. They include broadcasts,
regular many-to-many interactions, irregular many-to-many
interactions, and reductions. To handle these patterns, we
present: (i) a software API that exposes BMem to the soft-
ware developer, and (ii) transformations and tools for select-
ing communication-intensive data and restructuring appli-
cations for improved BMem and wireless channel use.

Further, we propose two hardware-based techniques to
reduce contention and latency in the wireless channel. First,
we introduce an adaptive wireless protocol. The protocol
dynamically identifies whether the data transmissions in the
execution are sparse or bursty, and applies a random-access
or a token-passing protocol, respectively.

Second, Replica provides hardware support for selectively
dropping packets if they carry certain types of data and if
the sender encounters a certain level of channel contention.
A software developer can use two operations, approximate
locks and approximate stores, to optimize applications that
can tolerate noise. Further, she can combine these operations
with existing approximation techniques that trade accuracy
for reduced communication and/or data size. Together, these
techniques have a greater impact on Replica than on standard
architectures, due to the limited BMem size and the limited
wireless channel bandwidth.

Our results show that Replica effectively uses wireless

communication for ordinary data. We evaluated Replica with
10 applications from graph analytics, vision, and numerical
simulation. For 64-core executions, Replica speeds-up the
applications over a conventional machine by a geometric
mean of 1.76x for exact computation and 1.89x for approxi-
mate computation. Further, Replica substantially reduces the
average energy consumption by 34% (or 38% with approxi-
mate computation). Finally, the area increase is small, and
the developer effort is modest.
Contributions. Our contributions are: (i) the Replica many-
core, with an adaptive wireless protocol and support for
selective packet dropping; (ii) software techniques and tools
for adapting applications to wireless communication; and
(iii) an evaluation of Replica.

2 Background

Figure 1 shows the WiSync architecture [3]. WiSync aug-
ments every core of a manycore with a Broadcast Memory
(BMem), a wireless transceiver, and two antennas (of which
we will only consider one). The transceiver has two main
modules, namely the physical layer (PHY) and the Medium
Access Control (MAC). The PHY module serializes and modu-
lates the data to transmit, detects collisions, and demodulates

Atomicity Failure
Bit (AFB)

Transceiver

\

1 | Write Completion '

s Bit(WCB) \
AN

Figure 1. WiSync manycore.

and deserializes data at reception. The MAC module man-
ages the access to the channel by scheduling transmissions
and handling collisions [5].

The BMem is a direct-mapped memory of a size similar
to an L1 cache. The BMems of all the cores contain the exact
same variables that are kept coherent through wireless up-
dates. A core accesses its BMem with plain loads and stores.
Based on the physical address of the location accessed, a
load or store request is sent either to the L1-L2 hierarchy
or to the BMem.

When a core writes to a BMem location, it generates a
message to be broadcasted through the wireless network. All
BMems (including the local one) are updated simultaneously.
This design ensures a total order of writes to BMems across
all cores. It also ensures that, at all times, all cores have the
same values in their BMems. Loads that access the BMem
simply read the local copy of the data.

WiSync uses 5 cycles to transmit a 77-bit packet, which cor-
responds to a 64-bit write. In the second cycle, the transceiver
listens if there was a collision with another packet in the
first cycle. If there was no collision, in the next three cy-
cles it sends the rest of the packet with guaranteed no colli-
sion. Otherwise, the transfer is aborted, and the senders will
retry sending their packets after a randomized, exponentially-
increasing number of cycles. This carrier-sensing protocol
with exponential backoff adapted to the on-chip scenario is
called Broadcast Reliability Sensing (BRS) [38].

WiSync supports read-modify-write instructions that form
the basis of synchronization primitives. These instructions
leverage a special hardware bit called the Atomicity Failure
Bit (AFB). The AFB is set in hardware if, in between the read
and write of the local core in a read-modify-write operation
to a BMem address, an external core succeeds in performing
a write to the same location. In this case, the write of the
local core does not occur, and the atomic operation fails.

3 Replica Overview

Replica extends the WiSync architecture in several ways, in-
cluding the ability to store ordinary (i.e., non-synchronization)
and synchronization data in the BMem. In this section, we

outline the key features of Replica.

Broadcast Memory. Replica provides an API to allocate
data in BMem. To store an array a in BMem, the developer
only needs to change the allocation site to

floatx a = wireless_malloc(n*sizeof(float));

All accesses to the array elements are automatically directed
to the BMem, and writes use the wireless channel. Pro-
grams do not require any additional developer or compiler
interventions, as the BMem is memory mapped. A call to
wireless_free deallocates the memory.

Since the amount of communication-intensive data may
exceed the size of the BMem, it is essential to restructure
communication-intensive data structures to fit as much as
possible in BMem. We present transformations that allow
the flexible storage of a fraction of communication-intensive
data in BMem. Our approach rests on two observations: (i) in
many applications, the size of communication-intensive data
increases at a much slower rate than the full input data size,
and (ii) since BMem is memory-mapped, we can transform
the data structure layout with little performance penalty.
Adaptive Wireless Protocol. In Replica, the wireless net-
work utilization varies across applications and even within
an application. For applications with sparse transmissions,
the carrier-sensing protocol from WiSync is sufficient. How-
ever, applications with high or bursty load perform better
with a token-passing protocol, in which only the node that
owns the token can transmit. Replica’s MAC module sup-
ports both protocols, and switches between the two to adapt
to the characteristics of the application. This process is auto-
matic and does not require input from the developer.
Approximate Broadcast Memory. To further reduce the
wireless channel contention, Replica uses a section of BMem
for approximate data. In this section, the messages for data
updates and locking operations may occasionally be dropped,
if the latency to perform the access exceeds a certain thresh-
old. Approximate data is allocated as

floatx a = approx_wireless_malloc(n*sizeof(float));

and is stored in a specially-designated section of the BMem.
Approximate BMem supports two operations that selectively
drop packets:

e Approximate Store: It assigns a value val to a variable
var if the write succeeds within a specified latency thresh-
old. Approximate stores can be unchecked or checked. In
the former, if the message is dropped, the computation
silently continues without informing the software. In the
latter, software can use the call approx_stac(var, val)
(for store approximate checked) to find out if the write suc-
ceeded. Unchecked stores use the same opcode as standard
stores. Checked stores use a different opcode.

e Approximate Lock: approx_lock (m) attempts to obtain
the lock m within a specified latency threshold. If it suc-
ceeds, it returns a success code. If it does not succeed,
either because it spins for too long on an already taken

lock, or because it takes too long to obtain the wireless net-
work to send the lock acquire update, it returns a failure
code. In this case, the software skips the critical section
and the unlock operation.

Tool Support. Replica includes a tool infrastructure - a pro-
filer, compiler passes for transformations, and an autotuner
- to help the developer restructure the application. Our expe-
rience shows that these tools can automate many tasks and
enable seamless adaptation of program code to versions of
Replica with different hardware characteristics.

4 Replica Architecture

This section describes the two main architectural features of
Replica that improve over WiSync — the adaptive wireless
protocol and the approximate BMem.

4.1 Adaptive Wireless Protocol

In WiSync, the wireless network is utilized relatively little,
and its traffic patterns are simple. Therefore, a wireless MAC
protocol like BRS is appropriate. In BRS, when a packet
collides, the sender does not try to resend it at the next
available opportunity. Instead, it waits for a backoff period
before retrying. Specifically, it considers a period of 2¢ — 1
cycles (where c is the number of collisions that the packet has
suffered so far), picks a random number within that period,
and waits for that number of cycles. The result is a backoff
that increases exponentially.

In Replica, the use of the wireless network is more com-
plex, and its utilization patterns vary across applications and
within an application. Hence, while Replica retains the BRS
protocol for applications or sections of applications with
sparse transmissions, it also supports a Token Ring protocol
in applications with frequent or bursty transmissions [20].

In the Token Ring protocol, there is a logical token that
is owned by different nodes at different times. At any time,
only the node that owns the token can transmit. At the end
of a packet transmission, or if the owner node remains silent
for one cycle, the token is passed to the next node following
a logical ring.

Replica introduces an adaptive wireless protocol that in-
telligently switches between the two protocols, adapting to
the characteristics of the execution. Specifically, one of the
nodes (which we call the master node) has a hardware mech-
anism in its transceiver that monitors the use patterns of
the wireless channel and chooses the protocol to use. The
mechanism’s hardware consists of two counters and simple
logic to perform a division and a comparison:

e When running in BRS mode, the counters are called Coll
and NoColl. Every time any core sends a packet, the mech-
anism checks for a collision. If there is no collision, it
increments NoColl; otherwise, it increments Coll.

e When running in Token Ring mode, the counters are called
Idle and Busy. If the mechanism observes an idle cycle,

1 Num_spins = 0
— Packet tracking table 2 R = TAKEN
- 3 Try: exchange R, m_addr
BMem Pointer | APL ID 4 if (WDB) return —1 //packet dropped
0 14 2 5 if (R == TAKEN){ //failure
1 3 5 6 if (Num_spins++ > MAX)
H 7 return =1 //too many failures
New packet L 8 . Tr
jmp y
>
10 else { //R is UNTAKEN
11 if (AFB){ //atomicity failure
Ratio = TBRS > *rrees 12 //no write occurred
True 13 R = TAKEN
14 jmp Try

Figure 2. Adaptive wireless protocol.

Figure 3. Packet tracking.

}

else return 0

}

//success

a core missed its opportunity to transmit, and the Idle
counter is incremented. Otherwise, a packet is transmitted,
and the Busy counter is incremented.

Figure 2 presents the operation of the mechanism. The
mechanism starts in BRS mode. Following an update to ei-
ther counter, the hardware calculates the ratio Coll/NoColl.
If this ratio is equal or higher than the Tggs threshold, the
transceiver in the master node clears the counters and in-
forms all the nodes to switch to the Token Ring mode.

From then on, the nodes use the Token Ring protocol, and
the mechanism in the master node’s transceiver computes
the ratio Idle/Busy. When the ratio is equal or higher than
the T;oken threshold, it means that only a few cores have
data to transmit and are unnecessarily waiting to get the
token. In this case, the transceiver clears its counters and
notifies all the nodes to switch to the BRS mode.

4.2 Approximate Broadcast Memory

The programmer can tag a certain range of BMem addresses
as containing approximable variables. For variables allocated
in this range, Replica can drop wireless packets through ap-
proximate stores and locks. This support reduces the pressure
when the wireless channel is highly contended.
Approximate Stores. Stores to approximable variables use
the wireless channel like any other BMem variable, but the
stores can be dropped if the contention for the wireless chan-
nel is high. In this case, neither the remote BMems nor the
local BMem are updated.

The MAC module keeps track of the waiting delay of drop-
pable write packets. If the waiting delay exceeds threshold
Tarop» the packet is dropped and the store is canceled. This
automatically and dynamically reduces the contention and
power in communication-intensive periods. This way, pro-
grammers can perform certain approximations only if it is
strictly necessary, to avoid saturating the network.

Figure 3 presents the hardware support. It consists of the
Packet Tracking Table (PTT) in the MAC module. When a
packet is sent to the BMem, it is deposited in a buffer in
the transceiver. At this point, if the packet is for a drop-
pable store, it allocates an entry in the PTT. Each PTT entry
has three fields. The first one is a pointer to the position

Figure 4. Approximate lock acquire.

of the packet in the buffer. The second one contains the
total time that the packet is expected to wait before being
sent. We call it the Accumulated Packet Latency (APL) for
the packet. When the APL for a packet reaches Ty, the
packet is dropped. The third field is only used by checked
approximate stores, and contains the ID of the register that
will receive the transmission outcome.

The algorithm to set the APL is protocol dependent. When
running in BRS mode, the APL for a packet is set as follows.
When the packet arrives at the queue, it sets its APL to the
minimum number of cycles that it will have to wait to be
sent. This time is equal to the number of cycles remaining
in the backoff period of the first packet in the queue, plus
the number of packets in the queue times the duration of a
packet send (i.e., 5 cycles including the cycle listening for col-
lisions). Note that this computation includes both droppable
and non-droppable packets. Further, when a packet is sent
and collides with another packet, the hardware calculates
the backoff time, and this backoff time is added to the APL of
all the droppable packets in the queue (including the packet
that collided). Finally, when a packet is dropped, the hard-
ware computes the number of waiting cycles to remove. This
number is 5 cycles plus the remaining cycles in the backoff
period (if this was the first packet in the queue). This number
is subtracted from the APL of all the droppable packets that
are queued after the dropped one.

When running in Token Ring mode, the APL for a packet
is set as follows. When the packet arrives at the queue, it
sets its APL to the number of cycles that it will have to wait
assuming an idle wireless channel. This number includes:
(i) for the first packet in the queue, the number of cycles
remaining until it can start the sending plus the cycles to
send the packet, plus (ii) for each of the other packets in the
queue, the number of nodes in the machine plus 3 (since a
packet takes 4 cycles to be sent now). Further, every time
that another node transmits, the hardware adds 3 cycles to
the APL of all the entries in the table. Finally, when a packet
is dropped, the number of waiting cycles to remove from
all the subsequent droppable packets is: (i) if the dropped
packet was the first one in the queue, the number of cycles

remaining until it could start the sending plus the cycles to
send the packet, or (ii) if the packet was not the first one in
the queue, the number of nodes in the machine plus 3.
When a packet is dropped, it is removed from the buffer.
Further, its PTT entry is removed and, for checked approx-
imate stores, the register indicated in the PTT entry is set.
When a droppable packet is sent successfully, the same ac-
tions occur, except that the register indicated in the PTT
entry is cleared.
Checked Approximate Stores. In unchecked approximate
stores, an update may be silently dropped. In the checked
version, the programmer obtains the outcome of the store.
The programmer uses a special store approximate instruction,
sta R1, R2, var_addr, which takes three arguments: a reg-
ister R1 containing the value to store, a register R2 that indi-
cates if the store was either successfully committed (R2=0)
or dropped (R2=1), and the address var_addr to receive the
data. R2 is the register recorded in the corresponding entry
of the PTT. We expose the API call approx_stac(var, val),
which is implemented as sta R1, R2, var_addr; ret R2.
It takes the variable to update (var) and the update (val),
and returns whether the write succeeded (zero) or not (one).

Approximate Locks. To support approximate locks, Replica
introduces a new hardware bit in the BMem controller called
the Write Drop Bit (WDB). The hardware sets the WDB bit
when a write packet belonging to a read-modify-write in-
struction is dropped. The WDB bit remains set until the
software reads it, at which point the bit automatically clears.
In this way, the programmer is aware of whether an ap-
proximate lock has been dropped. Since there is only one
read-modify-write instruction executing at a time per core,
a single WDB bit is enough.

Figure 4 shows the lock acquire routine for an approxi-
mate lock. The code tries to acquire lock m in address m_addr
using an exchange instruction. An approximate lock fails and
returns -1 when either (i) the software has unsuccessfully
tried to acquire the lock for more than MAX attempts, or (ii)
the write packet of the latest read-modify-write instruction
that attempted to acquire the lock is queued for Ty, cy-
cles. Condition (i) is implemented in software, using variable
Num_spins (Line 6). When condition (ii) occurs, the write
packet is dropped, the WDB bit gets set, and the exchange
instruction terminates without performing the write. In this
case, the exchange register R may have read the new value,
but the write to m_address has not occurred. Hence, the first
action that the software takes after the exchange is to check
WDB (Line 4). Irrespective of the current value of r, if WDB
is set, the function returns -1.

The software then checks R. If R’s value is still TAKEN
and the number of tries is no higher than MAX, the software
retries the exchange (Line 8). If R’s value is UNTAKEN, we
still need to do a final check. WiSync [3] requires the software
to check the Atomicity Failure Bit (AFB) (Line 11). If the

AFB is set, it means that another node updated m_address
between the local read and the local write, and that the local
write failed. In this case, the software resets R to TAKEN and
retries the exchange (Line 14).

When the software finds out that an approximate lock
operation has failed, it skips the critical section and the sub-
sequent unlock operation. We describe the software trans-
formation in Section 5.3. We have also designed a similar
algorithm for compare and swap (CAS) synchronization.

4.3 Other Features

Two additional Replica enhancements over WiSync’s wire-
less hardware are related to the capacity of BMem. First,
since the BMem is bigger in Replica than in WiSync, it needs
more address bits and is slower. Second, since different ap-
plications need different BMem sizes, Replica organizes the
BMem in chunks. The chunks that are not allocated by the
application are power-gated to save energy.

5 Software Adaptation

In this section, we describe the software infrastructure that
we use to leverage the Replica architecture. We start by de-
scribing the key access patterns that we target, then discuss
our transformations, and finally outline our tool support.

5.1 Communication-Intensive Access Patterns

There are several parallel access patterns that are hard to
support in conventional shared-memory multiprocessors.
They involve multiple (or all) cores reading from and writing
to a particular shared address. They cause communication
bottlenecks in current machines. Fortunately, the wireless
channel of Replica is especially suited to support these pat-
terns efficiently. We now describe them.

Broadcast. One thread (possibly referred to as the master)
writes to a shared address that is subsequently read by many
(or all) of the other threads (referred as the workers).
Regular Many-to-Many Interactions. It occurs in codes
where different threads operate on sets of overlapping shared
addresses, and the communication has regular patterns. Com-
mon examples are simulations and numerical applications.
Irregular Many-to-Many Interactions. This pattern is
like the previous one except that the inter-thread commu-
nication follows irregular patterns. A common example is
graph-processing algorithms.

Reduction. Many (or all) threads read and write to a single
shared address, aggregating their local contributions.

All these access patterns are easily supported using an
address in the BMem. A write by a processor automatically
broadcasts the update to all BMems. Since reads are always
to the local BMem and writes are observed by all processors
quickly, regular and irregular many-to-many interactions are
supported trivially. Reductions simply require that proces-
sors read and write atomically to the single shared address.

5.2 Transformations to Optimize BMem Utilization

We present several program transformations that enable the
BMem to store the most important data, or to store a larger
amount of important data.

Data Splitting. This transformation partitions a data struc-
ture into important data, which is allocated in BMem, and
less important data, which is allocated in regular memory.
This allows Replica to deliver high performance even for
large data structures that do not completely fit in BMem.

We describe two variants of the transformation. The first
variant sets up an indirect data structure and then par-
titions the original structure into two parts. For example,
consider an array of records. This transformation creates
an indirection array with as many pointers as the records,
where each pointer points to a record. The latency-critical
records are allocated in BMem, while the less important ones
in regular memory. All accesses to the original array are
then replaced with indirect references. The indirection array
(which after the initialization remains read-only) is allocated
in the regular memory.

This transformation is flexible, in that we can select any set
of fine-grained data to be allocated in the BMem. However,
its shortcomings are that we add additional references and
that the new array of pointers may evict some data from the
regular caches.

The second variant involves mapping some of the pages
of the data structure in the BMem, and mapping the rest in
regular memory. For example, we can map the first set of
pages of the structure into BMem, or the last set of pages,
or an arbitrary set of pages. Compared to the first variant,
this approach does not add additional indirections or cause
cache evictions. However, it is less flexible, as the grain size
of allocation is a page.

In both variants, we redistribute the computation so that
all threads participate in processing the data in the BMem.

Data Reduction. These transformations, inspired by other
ones from literature, enable BMem to store data more effi-
ciently. As aresult, the BMem logically stores a larger amount
of important data, potentially reducing program accuracy.

e Lock Coarsening reduces the number of locks needed to
access a given data structure, by making multiple elements
of the structure share the same lock [25]. This change
reduces the data in the BMem (since only a subset of locks
is required) and the inter-core communication, but at the
expense of false contention.

Cyclic Collection Update sets an upper bound on the
memory footprint of a collection, such as a list or a set. If
we need to add a new element to the collection that would
require an increase in the collection footprint, the new
element is dropped or it replaces an existing element. This
transformation is inspired by cyclic memory allocation
from program repair [43].

o Numerical Precision Reduction changes the type of the
variables stored in the BMem, reducing the size of the
variables at the expense of precision. For example, we can
change 64-bit double types to 32-bit float types.

5.3 Transformations to Reduce Communication

Some of these transformations leverage Replica’s approxi-
mate locks and stores to reduce communication in the wire-
less channel.

Skipping Critical Sections. We use Replica’s approximate
locks to occasionally skip critical sections:

if (approx_lock(m)==0) { // acquired lock
// execute critical section
unlock (m);

} // else skip

In the example, the code tries to acquire the lock. As indicated
in Figure 4, if the software unsuccessfully spins for more
than a certain number of attempts, or the write packet in a
read-modify-write instruction is queued for a certain num-
ber of cycles, approx_lock returns a non-zero code. In this
case, the code skips the critical section. This transformation
reduces the communication between cores. It is motivated
by a software-only transformation from [7].

Skipping Negligible Updates. This transformation skips
updates to a shared variable when the contribution of the
update to the value is below a specified threshold. In the
following example, the original code (a) adds the variable
upd to the variable shared. In the transformed code (b), if
upd is smaller than Threshold, the update is skipped.

upd = local_res(); upd = local_res();

if (upd > Threshold){
lock(m); lock(m);
shared += upd; shared += upd;

unlock (m); unlock(m);3}
(2) (b)

This transformation reduces the wireless communication
if shared is allocated in BMem. It is applicable when small
updates do not contribute much to the overall solution. How-
ever, it changes the computation and its result.

Skipping Updates with Compensation. This transforma-
tion skips updates but later tries to compensate for the contri-
bution of the missed updates. For instance, in the following
example, variable var should receive the sum of all the ele-
ments of array val. Since the stores use approx_stac, they
may be dropped. However, if approx_stac returns a non-
zero status because the contribution of var[i] is dropped,
subsequent iterations will attempt to add multiple times their
contribution to compensate. Finally, if the loop completed
without adding the final element(s), they will be aggregated
after. In the code, a local variable fcnt counts the number of
consecutive failed attempts.

int fent = @; // failcount

for (i=0;i<MAX;i++){
if (approx_stac(var, var+val[il*x(1+fcnt))) fcnt++;
else fcnt = 0;

}
if (fent > @) do {

lastf = approx_stac(var, var+val[MAX-1]xfcnt);
} while (lastf);

This transformation reduces communication in the wire-
less channel. It relies on the fact that, in many programs, the
consecutive updates have similar values. A similar transfor-
mation can also be applied to approximate locks.

5.4 Tool Support

To ease program adaptation, we implemented tools that help
the developer identify shared data and tune transformations.
Profiler. We developed a memory profiler that detects the
shared data in a program. The profiler instruments the mem-
ory instructions of the program to record a trace of the mem-
ory activity. It then identifies shared variables that are writ-
ten to by a thread before being read by multiple other threads.
It then sorts data structures based on the percentage of ad-
dresses that exhibit such patterns, and based on the number
of threads that access such addresses. Finally, it presents the
report to the developer.

Automated Transformations. We implement the compiler
transformations discussed in the previous sections within
Clang/LLVM. For instance, for the data splitting transfor-
mations in Section 5.2, the developer only needs to write
a pragma in the code, and the compiler then generates the
code with the structures that best fit in the provided BMem.
Autotuner. The Replica architecture and the program trans-
formations expose parameters that can be tuned to opti-
mize performance. An example of such parameters is the
frequency of dropped messages. To explore the space of pa-
rameter values and find those that maximize performance
subject to accuracy specifications, we develop an autotuner.
The autotuner uses the OpenTuner framework [9].

6 Methodology

To evaluate Replica, we perform cycle-level architectural sim-
ulations using Multi2sim [60]. We run a variety of applica-
tions from SPLASH-2 [63], PARSEC [14], and the CRONO [6]
graph suite.

6.1 Applications

Table 1 lists the 10 applications, what they do, and the inputs
we use in the evaluation.

Data Sharing Patterns. The benchmark applications have
different data-sharing patterns. Water has broadcast com-
munication. The graph applications (BFS, Pagerank, SSSP,
CC, and Community) have irregular, mostly many-to-many
communication. Volrend mainly contains communication
between neighbors, but also has broadcast communication.

Canneal has an irregular communication pattern, due to
locks. Bodytrack and Streamcluster have one-to-many com-
munications and reductions.

Inputs and Metrics. For the SPLASH-2 and PARSEC appli-
cations (except Streamcluster), we use the same input sets as
WiSynec. For the graph applications, we use input sets from
SNAP [2]. The input set sizes were chosen to allow detailed
simulation runs that ranged between 4 and 48 hours per
run. For the autotuning and profiling runs, we use different,
training inputs. These training inputs are as follows. For the
graph applications, they are different graphs of the same
size and connectivity. For Streamcluster, we generate three
new data sets with existing ground truth cluster centers [1].
For the other applications, we use alternative input data sets
provided by the application suite.

The last column of Table 1 shows the metrics that we use

to compute the accuracy loss of the computations when we
use approximation optimizations. We use metrics that have
been previously proposed in the literature.
Other Programs. We also analyzed other applications from
the SPLASH-2 and PARSEC suites. As noted in previous
characterizations [11], most of the remaining programs are
data-parallel (e.g., blackscholes and swaptions) or implement
regular algorithms with limited sharing, typically among
neighbors (e.g., fluidanimate and raytrace). Since we do not
expect Replica to improve performance for such computa-
tional patterns, we do not evaluate such applications.

6.2 Architecture Configurations
We analyze three configurations of Replica:

o Wireless-Locks (WL): it allocates only synchronization
variables in BMem. It extends WiSync with the adaptive
wireless protocol, and a BMem size that holds all the syn-
chronization variables: 23KB in Water, 39KB in Canneal,
and less than 1KB in the rest of the applications.

o Wireless-Optimized (WO): it extends WL by allocating
some ordinary data in the BMem and applying the Data
Splitting and Lock Coarsening transformations (Section 5.2).
These transformations preserve the program semantics.

o Wireless-Approximate (WA): it extends WO by apply-
ing approximation transformations, including Cyclic Col-
lection Update and Numerical Precision Reduction (Sec-
tion 5.2), the transformations from Section 5.3, and checked
and unchecked approximate stores (Section 4.2).

We compare these configurations to a conventional ar-
chitecture without BMem or wireless network in three con-
figurations: Baseline (B) runs the original application, Opti-
mized (O) augments B with the transformations in WO, and
Approximate (A) augments O with the transformations in
WA except those that need hardware support (e.g., approxi-
mate stores).

Table 2 shows the transformations for each application.
The shared variables column lists the non-synchronization

Table 1. Summary of the applications.

Name Description Input Metric

Water [63] Simulation of water molecules (nsquared) 1000 molecules for 10 steps Difference in average energies

BFS [6] Breadth-first search p2p-gnutella31 (from [2]) Fraction of unvisited nodes

SSSP [6] Single source shortest path p2p-gnutella31 (from [2]) Fraction of nodes with different distances
Pagerank [6] Compute pagerank for nodes in a graph p2p-gnutella31 (from [2]) Average difference in pagerank

CC [6] Compute connected components of a graph p2p-gnutella31 (from [2]) Fraction of nodes with wrong component

Bodytrack [14]
Streamcluster [14]
Volrend [63]
Community [6]
Canneal [14]

Track a body pose through images
Cluster streams of points

Render a 3D object

Compute modularity of a graph

Find optimal routing for gates on a chip

4 frames, 1000 models
4096 pts, 20 centers

head

p2p-gnutella31 (from [2])
10000 elements

Average relative difference of poses
B3 clustering metric [8]

Peak Signal to Noise Ratio (PSNR)
Average difference in calculated value
Relative difference in routing length

Table 2. Summary of the transformations for different configurations.

Name Shared Vars (Beyond Synch.) Optimization (O, WO) Approximation (A, WA)

Water molecules, gl_memory Data splitting Precision reduction and skipping critical sections
with compensation in function INTERF

BFS D Data splitting Approximate stores with Ty, =75 cycles

SSSP D Data splitting Approximate stores with Tyy0,=40 cycles

Pagerank PageRank Data splitting Skipping negligible updates with Threshold=0.01

CcC D Data splitting Approximate stores with Ty, =350 cycles

Bodytrack mParticles, mWeights, valid Command line knob Approximate stores with Ty,,,=750 cycles

Streamcluster feasible, work_mem, clusterCenters Command line knob Cyclic collection update in function copycenters

Volrend shading_table, out_image Data splitting Approximate stores with Tg,0,=1000 cycles

Community comm Data splitting Approximate stores with Tg,0,=2500 cycles

Canneal Array of locks Lock coarsening Skipping critical sections in function swap_locations

variables stored in the BMem in Replica. The Optimization
column presents the semantics-preserving transformations
in WO and in O. The Approximation column presents the ap-
proximation transformations in WA and, if applicable, in A.
Tuning Approximation Parameters. The Approximation
column shows different values of Ty, and Threshold (for
skipping negligible updates). To select these values for an
application, we used the autotuner and executed the appli-
cation multiple times on a set of different inputs. Our goal
was to find the minimum Ty, and the maximum Thresh-
old such that the accuracy of the result was acceptable. We
present the details in Section 7.5.

6.3 Energy Models

We model the energy consumed by the cores and the memory
hierarchy with McPAT [35] and CACTI [42], and the energy
of the wired links and routers with DSENT [57]. For the wire-
less hardware, we compute the power and area consumed
per core using data in the literature for 65nm. Specifically, for
the transceiver, we use a micrograph and data from [65-67]
to estimate an area of 0.25mm? (including passives) and a
power of 30mW. For the data converter, based on [64], we
estimate an area of 0.03mm? and a power of 0.72mW. For
the serializer and deserializer, data from [52] indicates an
area of 0.04mm? and a power of 10.8mW. Finally, for the
antenna, [30] shows a simple dipole that consumes an area
of 0.04mm?. We double the area to 0.08mm? to make it more
realistic. Therefore, the overall RF circuit with passives con-
sumes 0.4mm? and 41.5mW.

However, following [41, 65], we can power gate the trans-
mitter’s power amplifier and the receiver’s low noise ampli-
fier when not in use. This saves 10mW for the transmitter
and 10mW of the receiver. The remaining components (seri-
alizers, data converters, oscillators, mixers, and detectors) are

always on. Moreover, since our data comes from 16Gb/s sys-
tems and we use a system with 20Gb/s, we need to scale up
the power consumption linearly. This gives us the following
total values for the per-core RF circuitry at 65nm: 39.4mW
when the transmitter is idle, 39.4mW when the receiver is
idle, 26.9 mW when both are idle, and a total area of 0.4mm?.

The next step would be to scale these numbers to the
22nm technology assumed for the core. Several authors [4,
19] argue that the area reduces linearly with the feature
size. However, we conservatively use no scaling, and keep
the area at 0.4mm? and the power at 39.4mW with gating.
Note that these numbers are much higher than those used in
WiSync, which are 0.14mm? for the area and 18mW for the
power. Finally, using the amplifier consumption of [65], and
the power-gating overheads of [41], we estimate a transient
energy of 1.14pJ.

6.4 Simulator Implementation

We use cycle-level execution-driven simulations using the
Multi2sim [60] simulator. We model a manycore with 32-64
cores at 22nm technology running at 1GHz. Table 3 shows
the parameters of the architecture. Each tile has a 2-issue
out-of-order core, 32KB of private L1 instruction and data
caches, and a 512KB bank of shared L2. The NoC is a 2D mesh.
The per-core BMem is as large as an L2 bank, but we power-
gate unused 32KB chunks as directed by the application. We
will present the used fraction of BMem in the next section.
The wireless network has a data rate of 20 Gb/s, enough
to transmit a BMem line and its address (about 80 bits) in
4 cycles (plus one cycle for collision detection). We do not
consider missing packets due to noise, since the error rate is
below 107!, We augment Multi2sim with an on-chip wire-
less network that accurately models transmissions, collision
handling, transceiver power-gating, and packet dropping.

Table 3. Architecture modeled. RT means round trip.
General Parameters
Architecture Manycore with 32-64 cores at 22nm technology
Core Out of order, 2-issue wide, 1GHz, x86 ISA
ROB; 1d/st queue 64 entries; 20 entries
L1 I+D caches Private 32KB WB, 2-way, 2-cycle RT, 64B lines
L2 cache Shared with per-core 512KB WB banks
L2 bank 8-way, 6-cycle RT (local), 64B lines
Cache coherence ~ MOESI directory based
On-chip network 2D-mesh, 4 (default), 2 or 1 cycles/hop, 128-bit links
Off-chip memory Connected to 4 mem controllers, 110-cycle RT
Replica Parameters
Up to 512KB, in 32KB chunks (Table 5)
6-cycle RT, 64-bit wide line
20Gb/s; 1 cycle for collision detection
MAC Protocols BRS (exponential backoff), token passing in ring
MAC Thresholds Tgrs = 0.4, Tyoken = 15
Tarop 40-2500 cycles (Table 2)
Transceiv+Anten Area: 0.4mm?; TX/RX/idle: 39.4/39.4/26.9mW
Power gating Analog amplif. (transient: 1.14 pJ), unused BMem

Per-core BMem

Wireless channel

7 Evaluation

In our evaluation, we examine the performance of Replica
(Section 7.1), the effect of the adaptive wireless protocol
(Section 7.2), the energy consumption and area of Replica
(Section 7.3), the impact of approximations on accuracy (Sec-
tion 7.4), the relationship between tuning parameters and
the accuracy (Section 7.5), how applications are adapted for
Replica (Section 7.6), and a sensitivity analysis of architec-
tural parameters (Section 7.7).

7.1 Analysis of Performance

Figures 5 and 6 present the speedup of the different architec-
ture configurations over Baseline (B) for 64 and 32 core ar-
chitectures, respectively. The X-axis of the plots lists the con-
figurations: Baseline, Optimized, Approximate (when appli-
cable), Wireless-Locks, Wireless-Optimized, and Wireless-
Approximate. The Y-axis is the speedup, computed as the
ratio of the execution times of the B configuration and the
other configuration.

From Baseline (B) to Baseline Replica (WL). The differ-
ence between these two bars is the effect of using wireless
communication for synchronization variables and the sup-
port for the adaptive wireless protocol. From the figure, we
see that the average speedup of WL is 1.40x for 64 cores and
1.13x for 32 cores. For the applications in common with the
WiSync paper, the numbers are largely similar, except for
Streamcluster, which uses a different input set. We discuss
the impact of the adaptive wireless protocol in Section 7.2.

From Baseline Replica (WL) to Optimized Replica (WO).

We now consider the impact of the exact transformations.
Since such transformations have virtually no impact on the
baseline architecture (i.e., the difference between O and B is
minimal), we focus only on the wireless configurations.
WO improves performance over WL for all the applica-
tions. On average, these improvements translate into an
average speedup of 1.27x for 64 cores and 1.30x speedup
for 32 cores. This shows the benefits of wireless transfers of

optimized ordinary data. BFS and Streamcluster are commu-
nication heavy and thus benefit the most from these transfor-
mations. Most of the other applications have large improve-
ments as well. Even Volrend, the application with the small-
est gains, still manages to obtain speedups of about 10%.

From Optimized Replica (WO) to Approximate Opti-
mized Replica (WA). Allowing approximations further in-
creases the speedups in six applications, while in four applica-
tions there is practically no change. The average speedup of
WA over WO is 1.08x for 64 cores and 1.06x for 32 cores (but
can go up to 1.27x for CC on 32 cores). In most of the graph
applications, Volrend, and Bodytrack, the use of approxi-
mate stores reduces the contention on the wireless network,
and makes the remaining communications faster. In Water,
the majority of savings come from precision reduction, as
it allows storing more molecules in the BMem. Since the
computation has frequent broadcasts, the overall speed of
data transfers is improved. Approximations do not improve
Canneal or Streamcluster: in Canneal, the contention for
locks is small, while in Streamcluster the provided input
does not benefit from the approximation.

In the architecture without wireless network, these trans-
formations are only applicable to three applications. Further,
even in these applications, the impact is generally smaller
than in Replica. This is because the reduction of load in the
network is more beneficial in the bandwidth-limited wire-
less network. Overall, on average across all applications, the
difference between A and O is minimal.

Summary of speedups. Overall, the speedup of the ex-
act version of Replica (WO) over the optimized baseline
(0) is 1.76x. If we add the approximations, the speedup of
the approximate Replica (WA) over the approximate base-
line (A) is 1.89x.

Effect of Individual Approximation Transformations.
Comparing the WA and WO bars in Figures 5 and 6, we see
the impact of individual transformations listed in Table 2. For
example, dropping negligible updates in Pagerank generates
a 1.14x speedup for 64 cores and 1.05x for 32 cores. Skipping
critical sections in Water (only one of its transformations)
and Canneal can be shown to generate, on average, only
a 1.02x speedup for 64 cores and 1.01x for 32 cores. The
executions of these two benchmarks skipped 0.75% of all
critical sections. These speedups are modest because these
two applications have low lock contention.

The approximate stores optimization applied to six appli-
cations in Table 2 can be shown to generate, on average, a
1.08x speedup for 64 cores and 1.06x for 32 cores. To estimate
the effect of this optimization on an architecture without
wireless network, we modified the applications to skip writes
to the same data structures at the same frequency as write
packets were dropped in the wireless network. We then run
the applications on the O architecture, and obtain a lower
average speedup of 1.04x for 64 cores.

3.153.28 72 97 97

B O A WLWOWA B O WLWOWA B O WLWOWA B O A WLWOWA B O WLWOWA B O WLWOWA B O WLWOWA B O WLWOWA B O WLWOWA B O A WLWOWA B O A WLWOWA

Water BFS SSSp Pagerank CcC Bodytrack Strmcltr Volrend Cmnty Canneal Geomean

Figure 5. Speedups of the different configurations over Baseline (B) for 64 cores.

3.0 3.0

B O A WWOWA B O WLWOWA B O WLWOWA B O A WLWOWA B O WLWOWA B O WLWOWA B O WLWOWA B O WLWOWA B O WLWOWA B O A WLWOWA B O A WLWOWA

Water BFS SSSp Pagerank CcC Bodytrack Strmcltr Volrend Cmnty Canneal Geomean
Figure 6. Speedups of the different configurations over Baseline (B) for 32 cores.

[CoreDyn 3 CorelLeak [L2Dyn Em 2leak [NoCDyn I NoCleak [BmemDyn I BmemlLeak EEl Transc

Water BFS SSSP

Pagerank Bodytrack Strmcltr Volrend Cmnty Canneal Geomean

Figure 7. Energy consumed by the different configurations relative to Baseline (B) for 64 cores.

Synergy of Approximate Transformations. Finally, we
spotlight an additional optimization opportunity to combine
transformations that skip communication with those that
skip computation. We have implemented an additional opti-
mization in Pagerank, where if an update to the page rank of
a element is below a threshold in one iteration, the program
skips updating the page rank in all subsequent iterations,
thus reducing computation. The speedup of WA over WO ob-
tained with this transformation with 64 cores is 2.10x. This is
higher than the 1.60x speedup of A over O attained in an ar-
chitecture without wireless network, for the same accuracy.

7.2 Adaptive Wireless Protocol

In our experiments, we run the adaptive mechanism of Fig-
ure 2 for an initial section of the execution of the application,
until the hardware can identify which of the two protocols
is best for the application. Specifically, the execution of an
application is logically divided into intervals of 10,000 cycles.
At the beginning of each interval, the two counters discussed

in Section 4.1 start at zero. Then, as execution proceeds, they
get updated. At the end of the interval, based on their rela-
tive values and the values of the Tgrs and T;yke, thresholds
(Table 3), the hardware decides what protocol to try in the
next interval, and clears the counters. The process then starts
again. After about 350 intervals on average, the hardware
makes the decision to stick with the protocol that has been
chosen in most of the intervals so far.

Of our applications running under WO, seven end-up stick-
ing with the token ring protocol (BFS, SSSP, Pagerank, CC,
Streamcluster, Volrend, and Community), and three with the
BRS protocol (Water, Bodytrack, and Canneal). In most ap-
plications, the percentage of intervals when the dominant
protocol was chosen is greater than 75%. The percentages
are lower in BFS (60%), Pagerank (51%), and Volrend (51%).

To assess the performance impact of our adaptive wireless
protocol, we measure how the execution time of WO in Fig-
ure 5 would change if either all applications were using BRS
or all were using token ring. Specifically, if the applications

Table 4. Output accuracy. 020 — <€ 020 BFS 020 _Bodytrack
L 018 ‘ 015 | 018 St lust Pagerank
go.lo B 0.10 0.10 < reamcluster -~ 0. 9
Benchmark A WA 0o 005 0os R - ~015 = e o €. [T ——
Water 0.083 0.0004 L 1 | L] — Tralning input 3 3 0.
BFS ~ 0.0002 000 55300300400 %0 100 300 500 °°%00 1000 1400 1800 —0-10 So2
X 5 H
SSSP - 0.046 aras | 200 [, N goos 501
P k 1024 1024 5245 N 0.00 5
ageran 00 0.0 §2»43 230 107 | N 20 60 80 100 120 40.05670.1 02 03 04 0.
CcC - 0.0007 ‘%;';z \\\ 2.40 1.06 . i Memory required(KB) Threshold
Bodytrack - 0.099 y S R
Streamcluster - 1.00 > 50200300400 >*°0 100 306 500 600 1000 1400 1800
i Latency Thresh. Latency Thresh. Latency Thresh. .
Volrend 37.2dB Y Y v Figure 9. Tunable accuracy profiles.
Community 0.07
Canneal 0.0001 0.0004 Figure 8. Autotuning latency thresholds (Ty,.p)-

that prefer token used BRS, their individual execution times
would be higher by 28.1% (Community), by 27.1% (CC), by
21.7% (Pagerank), and by less than 2.2% (BFS, SSSP, Stream-
cluster, and Volrend). Conversely, if the applications that pre-
fer BRS used token, their individual execution times would
be higher by 8.6% (Bodytrack) and by less than 2.0% (Water
and Canneal). With these results, we can conclude that, if all
the applications used BRS, the average execution time under
WO would increase by 8.4%; if all the applications used token
ring, the average execution time would increase by 1.2%.

7.3 Analysis of Energy and Area

Energy Impact. Figure 7 shows the energy consumed by
the different configurations relative to B for 64 cores. The
figure is organized as Figure 5. The energy is broken down
into dynamic (Dyn) and leakage (Leak) energy for the core
(including L1), L2, NoC, and BMem. We also show the con-
tribution of the transceiver.

The results show that about half of the energy is dynamic
energy in the core, and the rest is leakage energy in all the
components. Across the bars, we see that the energy sav-
ings of each configuration over the Baseline (B) are broadly
proportional to the performance improvements of the config-
uration over B. The wireless configurations reduce the cost
of the polling operations and long distance communications.
Therefore, they reduce the energy consumption. This effect
is especially visible in Streamcluster.

The energy cost of the wireless communication itself can
be estimated by adding the contributions of the BMem and
the transceiver. We see that such contribution is modest. On
average, it is 8.9% of the energy in WO and 8.6% of the energy
in WA. The results for 32 cores show a similar behavior and
are omitted to save space.

Summary of energy savings. Overall, the average energy
savings of the exact version of Replica (WO) over the opti-
mized baseline (O) are 34%. The average energy savings of
the approximate Replica (WA) over the approximate baseline
(A) are 38%.

Area Impact. Based on the numbers from Section 6.3 and
Table 3, our tools estimate that the area overhead of support-
ing wireless communication is around 15.5% of the Replica
architecture. This includes the contribution of the BMems

(11.52%) and of the transceivers and antennas (3.97%). Note
that these results are conservative, as we do not scale the
area of the RF components from 65nm to 22nm (Section 6.3).

7.4 Analysis of Accuracy

Table 4 presents the accuracy losses of the A and WA exe-
cutions analyzed in Section 7.1 for 64 cores. The accuracy
losses are based on the accuracy metrics defined in Table 1.
Configuration A does not exist in some applications because
the optimizations applied are not supported in conventional
architectures (e.g., the approximate stores) or are not useful
(e.g., the cyclic collection updates). It can be shown from
past literature [16, 37, 54] that the levels of accuracy loss
presented are considered acceptable.

Six applications use approximate stores. On average, 4%
of all stores were dropped in our applications. The graph
benchmarks implement iterative algorithms where each it-
eration improves on the results. Approximate stores may
cause skipping an update to a node’s value. However, the
computation for that node will be redone in a future itera-
tion, reducing the final error. In Volrend, approximate stores
cause a small effect on the PSNR of the output image. Our
inspection shows that only 0.8% of the pixels differ by 10%
or more from the Baseline (7% of the pixels differ by more
than 5%). In Bodytrack, approximate stores cause the model
calculations to be done on stale data. Because Bodytrack
aggregates a large number of models, errors in a few models
have a small impact on accuracy.

The approximate version of Pagerank skips updates to the
shared state if the value is below a given threshold. With a
threshold value of 0.01, the approximate version produces
the same top 10 and top 100 elements.

Water is a simulation that can typically handle the small
loss of precision from double to float conversion. While skip-
ping updates can cause errors to amplify across time steps,
using the compensation significantly reduces this effect. In
Canneal, lock coarsening and skipping critical sections cause
minimal changes in the generated netlist.

In Streamcluster, the approximation overwrites cluster
centers if the allocated list of centers is already full. For
the provided input, all intermediate centers fit into the list
without the approximation. Section 7.5 shows the impact on
accuracy for larger inputs.

7.5 Profiles of Tunable Approximations

We study the relationship between the accuracy of the com-
putation, the approximation parameters, and different inputs.

Approximate Stores. Since the latency threshold for drop-
ping packets in approximate stores (Ty,,) needs to be speci-
fied by the software, we used our autotuner to identify good
Tarop values. Our goal is to attain a given level of accuracy
(i.e., more than 40 dB for Volrend and less than 10% error for
other applications).

Figure 8 shows the results of autotuning experiments for
CC, BFS, and Bodytrack. The figure shows how the error
and speedup change with Ty, values. Typically, as the auto-
tuner reduces Ty,op, the application accuracy changes a little,
until the point where the error rate dramatically increases.
The remaining applications exhibit similar behavior. Using
these models, the autotuner selected the Ty, values that
we used with the production inputs of Table 1.

Streamcluster. The number of cluster centers controls the
size of the memory allocated in the BMem. The Streamcluster
input provided by PARSEC consists of uniformly-distributed
centers, and is not suitable for accuracy analysis. We there-
fore used alternative inputs (Section 6.1). Figure 9 presents
the accuracy as a function of the size of the data structure
that contains the intermediate cluster centers. Each line is
generated by a different training input. At 60 KB, the number
of intermediate centers is around 200, which is more than
enough to contain all the actual cluster centers. We see that,
for 60 KB or higher, the error is negligible.

Pagerank. In Pagerank, we conditionally skip updates if
they are below a certain threshold. We analyze the impact
of using different thresholds on accuracy for two inputs.
Figure 9 presents the results for inputs p2p-gnutella31 and
as-733 (from [2]). For both inputs, when the threshold values
are small (i.e., fewer updates are dropped), the error is low.
As the threshold increases, more messages are dropped and
the error increases.

7.6 Adapting Applications to Replica

Table 5 shows how we adapt applications for Replica. It
shows the lines of code in the program (Column 2), the num-
ber of lines affected by Replica’s transformations (Column 3),
the size of the data we place in BMem (Column 4), the fraction
of application’s data in BMem (Column 5), and the number
of data structures allocated in BMem vs. the number of struc-
tures that the profiler identified as shared among all threads,
including synchronization data structures (Column 6).

The results show that the changes to the code are typically
small. Moreover, the fraction of the application’s data that
is placed in BMem is typically very small — only Water and
SSSP are exceptions. Also, the size of such data is typically
only 100-300KB. In each application, we power-up as many
32KB chunks of BMem as needed to hold this data.

Table 5. Statistics on how programs are adapted for Replica.

Name LOC Affected Datain % Data Allocated
Lines BMem inBMem vs. Profiled

Water 1641 10 352 KB 26.0% 2vs.2
BFS 475 10 245 KB 0.0% 2vs. 2
SSSP 351 30 245 KB 23.2% 2vs. 2
Pagerank 375 20 66 KB 0.8% 2vs.2
CcC 557 10 245 KB 1.4% 2vs. 2
Bodytrack 8672 24 121KB 8.7% n/a
Streamcluster 1660 8 137KB 16.4% 3vs. 4
Volrend 2604 4 147KB 0.6% 3vs.3
Community 580 15 245KB 0.0% 2vs. 2
Canneal 2886 50 39 KB 0.1% 2vs. 2

Table 6. Speedups for different cycles per hop (C/H) in the wired
network.

Speedup 64 cores 32 cores

Metric C/H=4 C/H=2 C/H=1 C/H=4 C/H=2 C/H=1
A/WA 1.89 1.51 141 1.52 1.37 1.32
O/WO 1.76 1.39 1.31 1.45 1.29 1.23
WL/WO 1.27 1.12 1.12 1.30 1.17 1.17
WO/WA 1.08 1.09 1.08 1.06 1.06 1.07

Profiler. In all applications except Bodytrack, the profiler
identified all the data structures shared by all the threads.
This includes synchronization data structures, such as barri-
ers. We allocated these in the BMem. In Bodytrack, the pro-
filer could not instrument the C++ std: : vector allocator.

Data Scaling. We also studied how the size of the data that
we want to place in BMem scales with input data size. For the
graph applications, such data consists of nodes with many
neighbors. We studied 20 graphs with 100K-3M nodes from
the popular SNAP dataset of graphs [2]. In 16 of these graphs,
all nodes with high sharing (at least 8 neighbors) do fit inside
the BMem for our applications. Even some graphs of size
10M nodes will fit, if we limit the storage in BMem to nodes
with at least 32 neighbors.

For the other applications, the size of the data that we
want to place in BMem scales as follows. For Water, it scales
linearly with the number of molecules, but independently
of the number of steps; for Bodytrack, with the number of
models used, but independently of the size or number of
frames; for Volrend, with the size of the image, but inde-
pendently of the number of rendering steps; for Canneal,
with the number of locks, but independently of the number
of circuit gates; and for Streamcluster, with the number of
intermediate centers, but independently of the total number
of data points.

7.7 Sensitivity to Architectural Parameters

Latency of the Wired Network. Our default wired NoC
has a latency of 4 cycles per hop (Table 3). In this section, we
re-evaluate Replica with wired NoCs that have a latency of
2 or 1 cycles per hop. Table 6 shows the resulting values of
various speedups for different cycles per hop and different
core counts. Each number is the geometric mean of all the

applications. The table shows that, as the wired network
becomes faster, the Replica speedups (A/WA, O/WO, and
WL/WO) decrease. However, even for the fastest, 1-cycle per
hop NoC, the speedups are considerable. The speedups due
to approximations (WO/WA) remain unchanged.

Bigger L2 Cache. We have increased the size of the L2s
of the Baseline (B) architecture from 512KB to 1MB per
core, to use the same storage as a worst-case Replica — al-
though Replica only uses a fraction of its BMem (Table 5).
We find that this change only speeds-up Baseline by 1.04x
for 64 cores.

8 Related Work

Wireless Architectures. We described WiSync [3] in Sec-
tion 2. Duraisamy et al. [27] accelerate graph analytics using
an NoC augmented with wireless links to better support
irregular communication patterns. In their case, the appli-
cation is oblivious of the underlying architecture, and the
routing mechanism of each node decides whether to use
the wireless links or the regular wire lines, based on the
destination address. Their work is also different from ours
in that the wireless links are only used to unicast packets
between distant cores, irrespective of their criticality, and
just as a way to shorten the propagation time of the packets
through the network. Later, Duraisamy et al. [26] propose
to accelerate graph analytics by bypassing certain updates.
Their approximation is exclusively software-based and re-
duces both the computation and the volume of data lookups,
specific to a particular community detection graph algorithm.
In contrast, Replica presents hardware-supported, general
approximate store and approximate lock mechanisms, which
we applied across multiple application domains.

Nanophotonics and Transmission Lines. Transmission
of optical signals through nanophotonic waveguides [12,
32, 33, 58, 62] and transmission of radiofrequency signals
through transmission lines (TLs) [13, 17, 18, 45, 55, 59] can
provide broadcast. Compared to wireless networks, both
nanophotonics and TLs are more energy efficient and pro-
vide higher bandwidth, because energy is guided rather than
radiated. However, network design using either nanopho-
tonics or TLs becomes more complex and less scalable than
wireless. It is more complex because it requires a physical
infrastructure that interconnects the nodes. Nanophotonics
are less scalable due to laser power needs. Light is modu-
lated by the transmitter and then guided to all the receivers.
Each receiver extracts a fraction of the light, causing losses,
and requiring high laser power for large destinations sets.
TLs are less scalable due to: (1) the need to overcome signal
reflections with amplifying stages between segments, which
are costly and complicate the design, (2) the requirement
of a centralized arbiter for the bus, (3) the fact that the ana-
log logic in TLs cannot handle broadcast operations well,
especially if the fan-out is large.

Scratchpads. While both BMem and scratchpads [10] have
a finite size, BMems are automatically coherent. They do not
rely on the compiler to keep them coherent, which is a major
reason for the difficulty of using scratchpads. In Replica, the
programmer and/or compiler just allocates the data in BMem
and Replica transparently handles coherence in hardware.
Lossy NoCs. Prior work has proposed to apply lossy com-
pression techniques to messages before sending them to the
network [15]. The approximation occurs in the (wired) net-
work interface, but could be potentially applied to wireless
too. Although bufferless networks [22, 44] drop or deflect
packets to undesired paths when there is contention at the
switches, they are not approximate, since delivery is ensured
through retransmissions.

Approximate Parallelization. Relaxed synchronization op-
timizations intentionally give up some synchronization for
faster execution (e.g., [16, 24, 31, 37, 39, 40, 47-51, 61]). The
previous works mainly show the potential of many com-
putations to successfully continue execution with relaxed
synchronization and random errors on commodity hardware.
Our paper presents an approximate BMem architectural ab-
straction that is specialized for packet dropping. We show
the efficiency of our hardware and software co-design and
develop a toolchain to automate program adaptation.

9 Conclusion

This paper presented Replica, a manycore that uses wire-
less communication for communication-intensive ordinary
data. Replica supports two hardware mechanisms to reduce
contention and latency in the wireless channel: an adaptive
wireless protocol and the ability to selectively drop wireless
packets if the sender encounters a certain level of contention.
We also described the computational patterns that can lever-
age wireless communication, and exact and approximate
programming techniques to restructure applications.

Our results showed that Replica effectively uses wireless
communication for ordinary data. For 64-core executions,
Replica sped-up applications over a conventional machine by
a geometric mean of 1.76x for exact computation and 1.89x
for approximate computation. Further, Replica substantially
reduced the average energy consumption by 34% (or 38%
with approximate computation). Finally, the area increase is
small, and the developer effort modest.

Acknowledgments

We would like to thank Keyur Joshi for his help with compiler
transformations. This work was funded in part by NSF Grants
No. CCF-1629431 and CCF-1703637.

References

[1] 2018. Sci-Kit Learn. scikit-learn.org.

[2] 2018. Stanford Network Analysis Project snap.stanford. edu.

[3] Sergi Abadal, Eduard Alarcon, Albert Cabellos-Aparicio, and Josep
Torrellas. 2016. WiSync: An Architecture for Fast Synchronization
through On-Chip Wireless Communication. In ASPLOS.

[4] Sergi Abadal, Mario Iannazzo, Mario Nemirovsky, Albert Cabellos-

[10

[11

[12

[13

[14

(15

[16

(17

[18

[19

[20

[21

[23

[24

—

[t

]

—

—

flan

—

—

—

—

[t

]

—

[t

=

Aparicio, Heekwan Lee, and Eduard Alarcén. 2015. On the Area
and Energy Scalability of Wireless Network-on-Chip: A Model-based
Benchmarked Design Space Exploration. IEEE/ACM Transactions on
Networking 23, 5 (2015).

Sergi Abadal, Albert Mestres, Josep Torrellas, Eduard Alarcén, and
Albert Cabellos-Aparicio. 2018. Medium Access Control in Wireless
Network-on-Chip: A Context Analysis. IEEE Communications Maga-
zine 56, 6 (2018).

Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2015.
CRONO: A benchmark suite for multithreaded graph algorithms exe-
cuting on futuristic multicores. In IISWC.

Riad Akram, Mohammad Mejbah Ul Alam, and Abdullah Muzahid.
2016. Approximate Lock: Trading off Accuracy for Performance by
Skipping Critical Sections. In ISSRE.

Enrique Amigo, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. 2009.
A comparison of extrinsic clustering evaluation metrics based on for-
mal constraints. Information retrieval 12, 4 (2009).

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. OpenTuner: An extensible framework for program autotuning.
In PACT.

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrishnan,
and Peter Marwedel. 2002. Scratchpad memory: A design alternative
for cache on-chip memory in embedded systems. In CODES.

Nick Barrow-Williams, Christian Fensch, and Simon Moore. 2009. A
communication characterisation of SPLASH-2 and PARSEC. In IISWC.
Christopher Batten, Ajay Joshi, Vladimir Stojanovic, and Krste
Asanovic. 2012. Designing Chip-Level Nanophotonic Interconnection
Networks. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 2, 2 (2012).

Bradford M. Beckmann and David A. Wood. 2003. TLC: Transmission
Line Caches. In MICRO.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC benchmark suite: Characterization and architectural
implications. In PACT.

Rahul Boyapati, Jiayi Huang, Pritam Majumder, Ki Hwan Yum, and
Eun Jung Kim. 2017. APPROX-NoC: A Data Approximation Frame-
work for Network-On-Chip Architectures. In ISCA.

Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks.
2015. HELIX-UP: Relaxing program semantics to unleash paralleliza-
tion. In CGO.

Aaron Carpenter, Jianyun Hu, Ovunc Kocabas, Michael Huang, and
Hui Wu. 2012. Enhancing effective throughput for transmission line-
based bus. In ISCA.

Aaron Carpenter, Jianyun Hu, Jie Xu, Michael Huang, and Hui Wu.
2011. A case for globally shared-medium on-chip interconnect. In
ISCA.

M Frank Chang, Jason Cong, Adam Kaplan, Mishali Naik, Glenn Rein-
man, Eran Socher, and Sai-Wang Tam. 2008. CMP Network-on-Chip
Overlaid With Multi-Band RF-Interconnect. In HPCA.

D.D. Clark, KT. Pogran, and D.P. Reed. 1978. An introduction to local
area networks. Proc. IEEE 66, 11 (1978).

Cray Research Inc. 1993. CRAY T3D System Architecture Overview.
Bhavya K Daya, Li-shiuan Peh, and Anantha P Chandrakasan. 2016.
Quest for High-Performance Bufferless NoCs with Single-Cycle Ex-
press Paths and Self-Learning Throttling. In DAC.

Sujay Deb, Amlan Ganguly, Partha Pratim Pande, Benjamin Belzer, and
Deukhyoun Heo. 2012. Wireless NoC as Interconnection Backbone for
Multicore Chips: Promises and Challenges. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems 2, 2 (2012).

Enrico A Deiana, Vincent St-Amour, Peter A Dinda, Nikos Hardavel-
las, and Simone Campanoni. 2018. Unconventional Parallelization of
Nondeterministic Applications. In ASPLOS.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Pedro C Diniz and Martin C Rinard. 1998. Lock coarsening: Eliminating
lock overhead in automatically parallelized object-based programs. J.
Parallel and Distrib. Comput. 49, 2 (1998).

Karthi Duraisamy, Hao Lu, Partha Pratim Pande, and Aananth Kalya-
naraman. 2017. Accelerating Graph Community Detection with Ap-
proximate Updates via an Energy-Efficient NoC. In DAC.

Karthi Duraisamy, Hao Lu, Partha Pratim Pande, and Ananth Kalya-
naraman. 2016. High-Performance and Energy-Efficient Network-on-
Chip Architectures for Graph Analytics. ACM Trans. Embed. Comput.
Syst 15, 26 (2016).

Yaosheng Fu, Tri M. Nguyen, and David Wentzlaff. 2015. Coherence
Domain Restriction on Large Scale Systems. In MICRO.

A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E.
Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay,
T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and
P. Vranas. 2005. Overview of the Blue Gene/L System Architecture. In
IBM Journal of Research and Development.

Felix Gutierrez, Shatam Agarwal, Kristen Parrish, and Theodore S. Rap-
paport. 2009. On-chip integrated antenna structures in CMOS for 60
GHz WPAN systems. IEEE Journal on Selected Areas in Communications
27, 8 (2009).

S.K. Khatamifard, I. Akturk, and U. R. Karpuzcu. 2018. On Approximate
Speculative Lock Elision. IEEE Transactions on Multi-Scale Computing
Systems 4, 2 (2018).

N. Kirman, M. Kirman, R. K. Dokania, Jose F. Martinez, Alyssa B. Apsel,
Matthew A. Watkins, and David H. Albonesi. 2006. Leveraging Optical
Technology in Future Bus-based Chip Multiprocessors. In MICRO.
George Kurian, J.E. Miller, James Psota, Jonathan Eastep, Jifeng Liu,
Jurgen Michel, L.C. Kimerling, and Anant Agarwal. 2010. ATAC: A
1000-Core Cache-Coherent Processor with On-Chip Optical Network.
In PACT.

J. Laudon and D. Lenoski. 1997. The SGI Origin: A ccNUMA Highly
Scalable Server. In ISCA.

Sheng Li, Jung Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and
N.P. Jouppi. 2009. McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures. In
MICRO.

Ching-Kai Liang and Milos Prvulovic. 2015. MiSAR: Minimalistic
Synchronization Accelerator with Resource Overflow Management.
In ISCA.

Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan. 2009.
Best-effort parallel execution framework for recognition and mining
applications. In IPDPS.

Albert Mestres, Sergi Abadal, Josep Torrellas, Eduard Alarcén, and
Albert Cabellos-Aparicio. 2016. A MAC protocol for Reliable Broadcast
Communications in Wireless Network-on-Chip. In Proceedings of the
9th International Workshop on Network on Chip Architectures.

Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2013. Parallelizing
sequential programs with statistical accuracy tests. ACM Transactions
on Embedded Computing Systems (TECS) 12, 2s (2013), 88.

Sasa Misailovic, Stelios Sidiroglou, and Martin C Rinard. 2012. Dancing
with uncertainty. In RACES.

Hemanta Kumar Mondal, Shashwat Kaushik, Sri Harsha Gade, and
Sujay Deb. 2017. Energy-Efficient Transceiver for Wireless NoC. In
VLSID.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P
Jouppi. 2009. CACTI 6.0: A Tool to Model Large Caches. Technical
Report.

Huu Hai Nguyen and Martin Rinard. 2007. Detecting and Eliminating
Memory Leaks Using Cyclic Memory Allocation. In ISMM.

GP Nychis, Chris Fallin, and Thomas Moscibroda. 2012. On-chip
networks from a networking perspective: congestion and scalability
in many-core interconnects. In SIGCOMM.

Jungju Oh, Milos Prvulovic, and Alenka Zajic. 2011. TLSync: support
for multiple fast barriers using on-chip transmission lines. In ISCA.

[46]

(47]

(48]
(49]
(50]

(51]

(52]

[53

—

[54

flan)

(55]

(56]

(57]

(58]

Jungju Oh, Alenka Zajic, and Milos Prvulovic. 2013. Traffic Steering
Between a Low-latency Unswitched TL Ring and a High-throughput
Switched On-chip Interconnect. In PACT.

Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi
Nair, and Daniel Prener. 2012. Programming with relaxed synchro-
nization. In Relax.

Martin Rinard. 2006. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. In SC.

Martin Rinard. 2013. Parallel Synchronization-Free Approximate Data
Structure Construction. In HotPar.

Martin C Rinard. 2007. Using early phase termination to eliminate
load imbalances at barrier synchronization points. In OOPSLA.
Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott
Mabhlke. 2014. Paraprox: pattern-based approximation for data parallel
applications. In ASPLOS.

Saurabh Saxena, Guanghua Shu, Romesh Kumar Nandwana, Mrunmay
Talegaonkar, Ahmed Elkholy, Tejasvi Anand, Woo Seok Choi, and
Pavan Kumar Hanumolu. 2017. A 2.8 mW/Gb/s, 14 Gb/s Serial Link
Transceiver. IEEE Journal of Solid-State Circuits 52, 5 (2017).

S. Scott. 1996. Synchronization and Communication in the T3E Multi-
processor. In ASPLOS.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin Rinard. 2011. Managing performance vs. accuracy trade-offs
with loop perforation. In FSE.

Eran Socher and Mau-Chung Frank Chang. 2007. Can RF Help CMOS
Processors?[Topics in Circuits for Communications]. IEEE Communi-
cations Magazine 45, 8 (2007).

Per Stenstrom, Mats Brorsson, and Lars Sandberg. 1993. An Adaptive
Cache Coherence Protocol Optimized for Migratory Sharing. In ISCA.
Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei, Jason
Miller, Anant Agarwal, Li-Shiuan Peh, and Vladimir Stojanovic. 2012.
DSENT - A Tool Connecting Emerging Photonics with Electronics for
Opto-electronic Networks-on-Chip Modeling. In NoCS.

Chen Sun, Mark T. Wade, Yunsup Lee, Jason S. Orcutt, Luca Alloatti,
Michael S. Georgas, Andrew S. Waterman, Jeffrey M. Shainline, Ri-
mas R. Avizienis, Sen Lin, Benjamin R. Moss, Rajesh Kumar, Fabio
Pavanello, Amir H. Atabaki, Henry M. Cook, Albert J. Ou, Jonathan C.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Leu, Yu-Hsin Chen, Krste Asanovié, Rajeev J. Ram, Milo§ A. Popovi¢,
and Vladimir M. Stojanovi¢. 2015. Single-chip microprocessor that
communicates directly using light. Nature 528, 7583 (2015).

Guang Sun, Shih-Hung Weng, Chung-Kuan Cheng, Bill Lin, and
Lieguang Zeng. 2012. An on-chip global broadcast network design
with equalized transmission lines in the 1024-core era. In Proceedings
of the International Workshop on System Level Interconnect Prediction.
Rafael Ubal, Perhaad Mistry, Dana Schaa, Huntington Ave, and David
Kaeli. 2012. Multi2Sim: A Simulation Framework for CPU-GPU Com-
puting. In PACT.

Abhishek Udupa, Kaushik Rajan, and William Thies. 2011. ALTER:
Exploiting Breakable Dependences for Parallelization. In PLDL

Dana Vantrease, Robert Schreiber, Matteo Monchiero, M. McLaren,
N.P. Jouppi, Marco Fiorentino, Al Davis, Nathan Binkert, R.G. Beau-
soleil, and J.H. Ahn. 2008. Corona: System Implications of Emerging
Nanophotonic Technology. In ISCA.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. 1995. The SPLASH-2 programs: Characteri-
zation and methodological considerations. In ISCA.

Benwei Xu, Yuan Zhou, and Yun Chiu. 2017. A 23-mW 24-GS/s 6-bit
Voltage-Time Hybrid Time-Interleaved ADC in 28-nm CMOS. IEEE
Journal of Solid-State Circuits 52, 4 (2017).

Xinmin Yu, Joe Baylon, Paul Wettin, Deukhyoun Heo, Partha Pratim
Pande, and Shahriar Mirabbasi. 2014. Architecture and Design of Multi-
Channel Millimeter-Wave Wireless Network-on-Chip. IEEE Design &
Test 31, 6 (2014).

Xinmin Yu, Hooman Rashtian, and Shahriar Mirabbasi. 2015. An

18.7-Gb/s 60-GHz OOK Demodulator in 65-nm CMOS for Wireless
Network-on-Chip. IEEE Transactions on Circuits And Systems -I: Regular
Papers 62, 3 (2015).

Xinmin Yu, Suman Prasad Sah, Hooman Rashtian, Shahriar Mirabbasi,
Partha Pratim Pande, and Deukhyoun Heo. 2014. A 1.2-p]/bit 16-Gb/s
60-GHz OOK Transmitter in 65-nm CMOS for Wireless Network-On-
Chip. IEEE Transactions on Microwave Theory and Techniques 62, 10
(2014).

Weirong Zhu, Vugranam C Sreedhar, Ziang Hu, and Guang R Gao.
2007. Synchronization State Buffer: Supporting Efficient Fine-grain
Synchronization on Many-core Architectures. In ISCA.

	Abstract
	1 Introduction
	2 Background
	3 Replica Overview
	4 Replica Architecture
	4.1 Adaptive Wireless Protocol
	4.2 Approximate Broadcast Memory
	4.3 Other Features

	5 Software Adaptation
	5.1 Communication-Intensive Access Patterns
	5.2 Transformations to Optimize BMem Utilization
	5.3 Transformations to Reduce Communication
	5.4 Tool Support

	6 Methodology
	6.1 Applications
	6.2 Architecture Configurations
	6.3 Energy Models
	6.4 Simulator Implementation

	7 Evaluation
	7.1 Analysis of Performance
	7.2 Adaptive Wireless Protocol
	7.3 Analysis of Energy and Area
	7.4 Analysis of Accuracy
	7.5 Profiles of Tunable Approximations
	7.6 Adapting Applications to Replica
	7.7 Sensitivity to Architectural Parameters

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

