
Abstract

In this paper a class of fourth-order methods for solving nonlinear equations and sys-

tems is presented. Some dynamical aspects of the family will be analyzed to determine

the most stable members of the class. Moreover, a numerical estimation of the solution

of Burgers’ equation by using different elements of the family, is proposed.

Keywords: nonlinear equation, iterative methods, basins of attraction, Burgers’ equa-

tion.

1 Introduction

Problems in science and engineering usually involve nonlinear equations or systems.

The analytical solution of these kind of problems is difficult and, sometimes, we must

use iterative methods in order to estimate the solutions. In fact, we will use the de-

signed schemes to find a simple root α of a nonlinear equation f(x) = 0, where

f : D ⊆ R → R is a scalar function on an open interval D. Moreover, the proce-

dures will be extended for solving systems of nonlinear equations F (x) = 0, where

F : D ⊆ R
n → R

n, n > 1.

In the scalar case, the efficiency of an iterative scheme for solving nonlinear equa-

tions is usually measured by means of the Efficiency Index, defined by Ostrowski in

[8] as I = p
1
d , where p is the order of convergence of the method and d is the number

of functional evaluations per step. In order to get optimal schemes, in the sense of

Kung-Traub’s conjecture [7], we must draw on multipoint iterative schemes. Many

of them are very useful for solving nonlinear equations but they are not applicable to

nonlinear systems.

In this work, we present a family of uniparametric two-point iterative procedure for
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solving the nonlinear equation f(x) = 0. Its iterative expression is

yk = xk −
2

3

f(xk)

f ′(xk)
, (1)

xk+1 = xk −
(

1− 3

4

uk(1 + βuk)

1 + uk(β + 3
2
)

)

f(xk)

f ′(xk)
,

where uk = f ′(yk)−f ′(xk)
f ′(xk)

and β is an arbitrary parameter. Let us note that this family

contains known methods as Jarratt’s scheme [6] (for β = 0). We prove that the local

order of convergence of the elements of the family is four and so, all of them are opti-

mal methods. We can also extend this family for solving nonlinear systems F (x) = 0,

holding the order of convergence.

We will compare the proposed schemes with the well-known Newton’s method,

whose iterative expression is

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, . . . .

It is known that this scheme converges quadratically in some neighborhood of α, under

standard conditions.

From the stability point of view, the behavior of the members of the family is ana-

lyzed on some test functions in the numerical section. The aim will be to choose the

best elements of the class, in terms of stability and reliability. Finally, an applied mul-

tivariate problem will be solved, that is, the approximate solution of Burgers’ equation,

by using those more stable methods found by using dynamical tools.

2 Convergence analysis

In the following result the local order of convergence of the proposed class of methods

(1) is analyzed, showing that, under the standard conditions, fourth-order of conver-

gence is reached for any real value of the parameter β.

Theorem 2.1 Let α ∈ D be a simple zero of a sufficiently differentiable function

f:D ∈ R → R in a convex set D. For any real value of β, the scheme defined in (1)

reaches fourth order of convergence, being its error equation

ek+1 =

((

1− 8

3
β

)

c32 − c3c2 +
1

9
c4

)

e4k +O(e5k), (2)

where ck = (1/k!)f
(k)(α)
f ′(α)

, k = 2, 3, 4, ..., and ek = xk − α.

Proof: By using Taylor expansion of f(xk) and f ′(xk) around α, we obtain

f(xk) = f ′(α)
[

ek + c2e
2
k + c3e

3
k + c4e

4
k + c5e

5
k

]

+O(e6k) (3)
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and

f ′(xk) = f ′(α)
[

1 + 2c2ek + 3c3ek
2 + 4c4ek

3
]

+O(e4k). (4)

From (3) and (4), we calculate the Taylor expansion of the quotient in the first step

f(xk)

f ′(xk)
= ek − c2ek

2 + 2(c22 − c3)ek
3

+(−4c32 + 4c2c3 + 3c3c2 − 3c4)ek
4 +O(ek

5).

Therefore, the error in the first step of the method is

yk − α =
1

3
ek +

2

3
c2ek

2 − 4

3
(c22 − c3)ek

3

+
2

3
(4c32 − 7c2c3 + 3c4)ek

4 +O(ek
5).

Furthermore,

f ′(yk) = f ′(α)
[

1 + 2c2(yk − α) + 3c3(yk − α)2 + 4c4(yk − α)3
]

+O((yk − α)4) (5)

= f ′(α)

[

1 +
2

3
c2ek +

(

4

3
c22 +

1

3
c3

)

ek
2 +

(

−8

3
c32 + 4c2c3 +

4

27
c4

)

ek
3

]

+O(ek
4).

Now, we get the Taylor expansion of uk by using (4) and (5):

uk =
f ′(yk)− f ′(xk)

f ′(xk)

= −4

3
c2ek +

(

4c22 −
8

3
c3

)

ek
2 +

(

−32

3
c32 +

40

3
c2c3 −

104

27
c4

)

ek
3 +O(ek

4).

So, we obtain

3

4

uk(1 + βuk)

1 + uk(β + 3
2
)

= −c2ek + (c22 − 2c3)ek
2 + (−8

3
βc32 + 2c2c3 −

26

9
c4)ek

3 +O(ek
4)

and hence,

(

1− 3

4

uk(1 + βuk)

1 + uk(β + 3
2
)

)

f(xk)

f ′(xk)
= ek +

((

−1 +
8

3
β

)

c32 + c3c2 −
1

9
c4

)

e4k +O(ek
5).

Finally, we have the final error equation of the method

ek+1 =

((

1− 8

3
β

)

c32 − c3c2 +
1

9
c4

)

e4k +O(e5k)

✷

Let us remark that different methods can be obtained from (1) by using different

values of β, some of them known ones. For example,
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• if we use β = 0, classical Jarratt’s scheme appears (see [6] ), which second step

in the iterative expression is

xk+1 = yk −
1

2

f ′(xk) + 3f ′(yk)

3f ′(yk)− f ′(xk)

f(xk)

f ′(xk)
.

• By using β = 1, another scheme is found, whose second step is calculated as

follows

xk+1 = yk −
6f ′(xk)

2 − 13f ′(xk)f
′(yk) + 3f ′(yk)

2

2f ′(xk)(3f ′(xk)− 5f ′(yk))

f(xk)

f ′(xk)
.

• When β = −3
2
, the expression of the second step is

xk+1 = yk −
23f ′(xk)

2 − 24f ′(xk)f
′(yk) + 9f ′(yk)

2

8f ′(xk)2
f(xk)

f ′(xk)
.

• If, for example, β = 1
2
, then

xk+1 = yk −
(f ′(xk)− 3f ′(yk))(5f

′(xk)− f ′(yk))

8f ′(xk)(f ′(xk)− 2f ′(yk))

f(xk)

f ′(xk)
.

Another interesting aspect of this class of method is that it can be directly extended

to nonlinear systems F (x) = 0, as only first derivatives of the nonlinear functions ap-

pear in the denominators of the iterative scheme (as it happens with Jarratt’s method).

Then, the corresponding iterative expression is

y(k) = x(k) − 2

3
[F ′(x(k))]−1F (x(k)),

x(k+1) = x(k) −
(

I − 3

4

[

I + (
3

2
+ β)u(k)

]

−1
(

u(k) + βu(k)2
)

)

[F ′(x(k))]−1F (x(k)),

(6)

where u(k) = [F ′(x(k))]−1[F ′(y(k))− F ′(x(k))].

In the following section, some test on different scalar functions will allow us to

select the most stable elements of the family and they will be used to estimate the

solution of Burgers’ partial differential equation in the multidimensional case.

3 Numerical results

In this section, we compare some of the schemes described with the well-known New-

ton’s procedure, that has second-order of convergence. Specifically, we compare it

with the elements of the defined class of iterative methods (1) (with equi-spaced val-

ues of the parameter β between −2 and 2) with Newton’s and Ostrowski’s methods.
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This comparison will be made, at a first stage, by using dynamical tools: we will

use the software described in [3] in order to draw the dynamical planes associated to

each one of the members of our proposed class of methods on some specific nonlinear

functions. We will try to deduce from the observed behavior of the methods which

elements of the family are more stable and reliable.

All these methods will be employed to solve some nonlinear equations:

• f1(x) = arctan(x), α = 0,

• f2(x) = xex
2 − sin2 x+ 3 cosx+ 5, α ≈ −1.2076478,

• f3(x) = sin2 x− x2 + 1, α ≈ ±1.4044916,

• f4(x) =
√
x2 + 2x+ 5− 2 sin x− x2 + 3, α ≈ 2.331968,

• f5(x) = (x− 1)3 − 1, α = 2.
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(a) Newton

Figure 1: Dynamical plane of Newton’s method on f1(x) = arctan(x)

For the representation of the convergence basins of the procedures, we draw a mesh

with four hundred points per axis; each point of the mesh is a different initial esti-

mation which we introduce in each scheme. If the method reaches approximately a

solution in less than eighty iterations, this point is drawn in orange (in green, blue,...

for other solutions of the nonlinear function). The color will be more intense when

the number of iterations is lower. Otherwise, if the method arrives at the maximum of

iterations without converging to any solution, the point will be drawn in black.

In Figures 1 and 2 the dynamical planes of Newton’s and proposed methods on

f1(x) are showed in the region [−2.5, 2.5] × [−2.5, 2.5]. As there exists only one

solution, we focus our attention on the wideness of the region of convergence of the

different methods. It can be observed that the widest real interval of convergence

[−1.9, 1.9] corresponds to β = 1 (Figure 2e) and β = 2 (Figure 2f), followed by

β = 0 (Figure 2d), with [−1.88, 1.88] as real region of convergence. These methods

highly improve the behavior of Newton’s method, not only in the order, but also in the

amplitude of the region of starting points.
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(f) β = 2

Figure 2: Dynamical planes of the proposed methods on f1(x) = arctan(x)
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Figure 3: Dynamical planes of Newton’s method on f2(x) = xex
2−sin2 x+3 cosx+5

In case of function f2(x), it is observed in Figures 3 and 4 that the best behavior, in

terms of stability, corresponds to Newton’s method (Figure 3). However, there is not a

great difference, in terms of wideness of the basin of convergence to the root, between

the proposed elements of the family and classical Newton’s method. Indeed, there is

a big similitude among the behavior of the elements of the class.

When the real two roots of f3(x) = sin2 x−x2+1 are estimated by using Newton’s

and new methods in [−2, 2] × [−2, 2], some conclusions can be stated. Firstly, eight

different basins of attraction appear (Figures 5 and 6), which is due to the existence

of another six complex roots. Taking them into account, the black regions correspond
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Figure 4: Dynamical planes of the proposed methods on f2(x) = xex
2 − sin2 x +

3 cosx+ 5
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Figure 5: Dynamical planes of Newton’s method on f3(x) = sin2 x− x2 + 1

to the pre-images of the infinity, that is, diverging behavior. In terms of stability, the

best methods are the member of the proposed family (1) with β = 0 (see Figure 6d)

and Newton’s scheme. There are not big differences related to the wideness of the real

basins of convergence. In these terms, all the elements are reliable and comparable

with Newton’s, but with fourth-order convergence.

7



b=−2

Re{z}

Im
{z

}

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

(a) β = −2

b=−1.5

Re{z}

Im
{z

}

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

(b) β = − 3

2

b=−1

Re{z}

Im
{z

}

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

(c) β = −1

b=0

Re{z}

Im
{z

}

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

(d) β = 0

b=1

Re{z}

Im
{z

}

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

(e) β = 1

b=2

Re{z}

Im
{z

}

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

(f) β = 2

Figure 6: Dynamical planes of the proposed methods on f3(x) = sin2 x− x2 + 1

3.1 Numerical estimation of the solution of Burgers’ equation

Now, let us consider the one-dimensional Burgers’ partial differential equation (see

[1] and [2]),
∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂2x
, (x, t) ∈ Ω (7)

where Ω = (0, 1) × (0, T ], with initial condition u(x, 0) = f(x), 0 < x < 1 and

boundary conditions u(0, t) = g1(t), u(1, t) = g2(t), 0 ≤ t ≤ T , being Re the

Reynolds number and f , g1 and g2 are sufficiently smooth given functions.

Burgers’ equation appears in turbulence problems, in the theory of shock waves

and in continuous stochastic processes. It has applications in gas dynamics, heat con-

duction, elasticity, etc.

Moreover, Burgers’ equation (7) is one of the very few nonlinear partial differential

equations which can be solved exactly. The so-called Hopf-Cole transformation [5]

u(x, t) = −
(

2

Re

)

φx(x, t)

φ(x, t)
,

gives us a solution of Burgers’ equation (7) if φ is a solution of the linear diffusion

equation
∂φ(x, t)

∂t
=

1

Re

∂2u

∂2x
.

In the following, we will define an implicit finite difference scheme for Burgers’

equation, by using g1(t) = g2(t) = 0 and f(x) = 2Dβπ sinπx

α+β cos πx
, where D = 1

Re
= 0.05,

α = 5 and β = 4. In this difference scheme, a mesh of 51 × 51 nodes in (x, t)
space is considered. With such a discretization, we will obtain a nonlinear system of

equations (per instant) F (u(x, tj)) = 0, to be solved by using Newton’s scheme and
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some elements of our proposed family of iterative methods. The approximated value

of the solution u(x, t) in each one of these nodes xi at the instant tj is located at the

(i, j)-entry of the solution matrix U .

Moreover, some numerical computations with proposed functions have been car-

ried out using variable precision arithmetic, with 100 digits, in Matlab 7.11.0. The

stopping criterion used at any instant tj is

‖u(k+1)(x, tj)− u(k)(x, tj)‖+ ‖F (u(k+1)(x, tj))‖ < 10−30

although both norms will be showed in Table 1 for t = 1. In any case, for the different

methods used, the mean number of iterations k (taking into account all the columns

of U) also appears. Moreover, some graphics showing the maximum error per instant

and the estimated solution will be showed, for some of the iterative methods used.

Also the approximate computational order of convergence ρ will appear, according to

(see [4])

p ≈ ρ =
ln (‖u(k+1)(x, tj)− u(k)(x, tj)‖/‖u(k)(x, tj)− u(k−1)(x, tj)‖)
ln (‖u(k)(x, tj)− u(k−1)(x, tj)‖/‖u(k−1)(x, tj)− u(k−2)(x, tj)‖)

.

The value of ρ that is presented in Table 1 is the last coordinate of vector ρ when the

variation between its values is small.

Method ‖u(k+1)(x, tj)− u(k)(x, tj)‖ ‖F (u(k+1)(x, tj))‖ k ρ
Newton 1.9004e-59 7.9382e-62 5 1.905904

β = −3/2 1.0511e-55 5.1320e-58 3 3.934506

β = 0 1.9004e-59 7.9382e-62 3 3.897573

β = 0.5 6.2407e-59 1.7594e-61 3 3.941980

β = 1 3.3192e-57 1.2700e-59 3 3.941884

Table 1: Numerical results for Burgers’ equation

Let us remark that the obtained estimations have been compared with the exact (up

to 15 digits) solution at the same nodes, showing all the methods the same maximum

exact error MEE = 0.004140236998958 (see Figure 7), per column of the solution

matrix U , what is reasonable being all of them of the same order and taking into

account that the error of the discretization process is of second order. From Table 1, we

deduce that, in terms of accuracy of the estimated solution, the members of the class

of iterative methods whose value of the parameter is close to zero are more precise,

what is in concordance with the dynamical results. The approximated computational

order of convergence ρ is also around the expected values.

4 Conclusions

A new family of fourth-order of convergence has been presented, fully extensible to

nonlinear systems of equations. A dynamical analysis on some interesting functions
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Figure 7: Maximum error per instant and estimated solution

allows us to select some good members of the family and to apply them on one of

the few nonlinear problems that have a known exact solution in applied problems:

Burgers’ partial differential equation. We have showed how some of the proposed

methods behave on this problem and have analyzed the exact error.
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