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Network-on-Chip architectures have been 
instrumental to multicore processors

1. Fast Synchronization Between Parallel Threads

2. Data Sharing between cores for Cache Coherency

Intel Teraflops Research Chip (2007)
World’s first programmable 80-core chip 
to deliver more than 1 Teraflops compute
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Speedup gained by parallelism is 
outweighed by the wired network’s 

communication cost for keeping 
caches coherent

From source to destination, packet is buffered, decoded, 
processed, encoded and retransmitted by each router

Performance Bottlenecked by “Coherence Wall”

NoC’s ability to ensure cache coherency and 
synchronization is slower than execution on each core
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Augment NoC with Millimeter-wave Transceivers

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

ROUTER ROUTER ROUTER ROUTER

1. Latency: Enables every core 
to reach every other core in 
just 1-hop
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1. Latency: Enables every core 
to reach every other core in 
just 1-hop

2. Broadcast: Local changes in 
the cache of a core can be 
instantaneously replicated at 
all other cores with single 
packet transmission

Augment NoC with Millimeter-wave Transceivers



Prototypes of wireless NoC transceivers that deliver multi-Gbps 
links while imposing low overhead
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1 Gbps 60 GHz OOK Transceiver

Prototypes of wireless NoC transceivers that deliver multi-Gbps 
links while imposing low overhead
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Traffic patterns can change drastically across different cores, 
difference time intervals, and different applications

A Key Bottleneck is Efficient Medium Access Design
A. Adapting to Dynamic Traffic Patterns
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Must prioritize Core 16’s traffic 

A. Adapting to Dynamic Traffic Patterns
B. Complex Dependencies from Synchronization Primitives

A Key Bottleneck is Efficient Medium Access Design

• Barriers and locks lead to non-trivial relationship between delivery time of 
packet on NoC and progress of execution
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Must prioritize Core 16’s traffic 

A. Adapting to Dynamic Traffic Patterns
B. Complex Dependencies from Synchronization Primitives

A Key Bottleneck is Efficient Medium Access Design

• Barriers and locks lead to non-trivial relationship between delivery time of 
packet on NoC and progress of execution



4-core 
BFS

4-core 
CC

Must prioritize Core 16’s traffic 

A. Adapting to Dynamic Traffic Patterns
B. Complex Dependencies from Synchronization Primitives

A Key Bottleneck is Efficient Medium Access Design

• Barriers and locks lead to non-trivial relationship between delivery time of 
packet on NoC and progress of execution

Traditional MAC protocols treat each packet as equally important



Must prioritize Core 16’s traffic 

A. Adapting to Dynamic Traffic Patterns
B. Complex Dependencies from Synchronization Primitives

A Key Bottleneck is Efficient Medium Access Design

• Barriers and locks lead to non-trivial relationship between delivery time of 
packet on NoC and progress of execution

4-core 
BFS

4-core 
CC

Hand-Tuned protocols cannot optimize for these complex hard-to-
model dependencies



Can we learn protocols that can adapt to 
dynamic traffic while optimizing for complex 

dependencies?



NeuMAC

Leverages Deep RL to generate new MAC protocols that 
can learn structure in traffic patterns and dynamically 

adapt the protocol



Design Constraints:
1. Can’t run deep inference every CPU time slot

• Past work on RL for MAC does inference per packet 
[ICA3PP 2013, IEEE J-SAC 2019, Computer Communications 2020, Electronics 2020]

2. Versatile enough to emulate large span of protocols

3. Should use reasonable number of parameters

Translation of Deep RL output to a MAC protocol



NeuMAC’s 2 Layer Parameterized Protocol
• First Layer: Underlying TDMA schedule 
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NeuMAC’s 2 Layer Protocol Design 
• Second Layer: Probabilistic CSMA schedule Overlayed

• NeuMAC assigns contention probabilities pi to cores for opportunistic channel capture

• Number of parameters is restricted to N for an N core processor
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NeuMAC’s 2 Layer Protocol Design 
• All pi = c > 0 à CSMA Protocol with tunable aggresion
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NeuMAC’s 2 Layer Protocol Design 
• All pi = c > 0 à CSMA Protocol with tunable aggresion

• All pi = 0 à Falls back to underlying TDMA Protocol
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NeuMAC’s 2 Layer Protocol Design 
• Can gracefully shift from TDMA to CSMA scheme while supporting all intermediate protocols

• Allows fine grained control to each core’s action so as to generate highly optimized protocols
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Design Constraints:
1. Can’t run deep inference every CPU time slot

2. Versatile enough to emulate large span of protocols

3. Should use reasonable number of parameters

Translation of Deep RL output to a MAC protocol
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Policy Network

Reward rt

NeuMAC Agent Wireless Network-on-Chip

rt

RL Formulation

RL Model 
Update
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We use end-to-end execution time as reward rt instead of network metrics
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Evaluation

•We implemented NeuMAC on a 64 core multiprocessor using a 
cycle-accurate architectural simulator, Multi2sim

• To evaluate NeuMAC’s generalizability, we test on 9 different 
applications from diverse domains using k-fold cross validation
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NeuMAC can achieve up to 1.69x to 3.74x speedup over baselines



• N

• Similar trends over Optimal CSMA and Adaptive Switching – 1.37x to 
1.56x speedups

• Scaling up to 1024 cores, NeuMAC improves throughput up to 64x 
and reduces latency by 3 orders of magnitude

End-to-End Execution Time Speedups

 1

 1.2

 1.4

 1.6

 1.8

Over CSMA Over TDMA

 1

 1.2

 1.4

 1.6

 1.8

CC BFS
PageRnk

SSSP
Volrend

Strm
Clstr

Canneal
BdyTrck

Commnty

3.74x

NeuMAC can achieve up to 1.69x to 3.74x speedup over baselines



• NeuMAC can learn and adapt to highly dynamic and 
complex traffic patterns at a very fine granularity 

• NeuMAC achieves 1.37x-3.74x application speedup, 
and can scale the gains with the number of cores

• mmWave NoCs opens up a new paradigm in chip 
interconnect designs, and allows programmers to 
overhaul the way parallel programs are written

To conclude



Thank You!

Contact: sjog2@illinois.edu


