
Wireless Network-on-Chip using Deep 
Reinforcement Learning

Zikun Liu, Antonio Franques, Vimuth Fernando, 
Sergi Abadal, Josep Torrellas, Haitham Hassanieh

Suraj Jog



Network-on-Chip architectures have been 
instrumental to multicore processors

1. Fast Synchronization Between Parallel Threads

2. Data Sharing between cores for Cache Coherency

Intel Teraflops Research Chip (2007)
World’s first programmable 80-core chip 
to deliver more than 1 Teraflops compute



CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

ROUTER ROUTER ROUTER ROUTER

Speedup gained by parallelism is 
outweighed by the wired network’s 

communication cost for keeping 
caches coherent

From source to destination, packet is buffered, decoded, 
processed, encoded and retransmitted by each router

Performance Bottlenecked by “Coherence Wall”

NoC’s ability to ensure cache coherency and 
synchronization is slower than execution on each core



CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

ROUTER ROUTER ROUTER ROUTER

Augment NoC with Millimeter-wave Transceivers

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

ROUTER ROUTER ROUTER ROUTER

1. Latency: Enables every core 
to reach every other core in 
just 1-hop



CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

CACHE
CORE

ROUTER ROUTER ROUTER ROUTER

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

CACHE
CORE

TX
RX CACHE

CORE
TX
RXCACHE

CORE
TX
RXCACHE

CORE
TX
RX

ROUTER ROUTER ROUTER ROUTER

1. Latency: Enables every core 
to reach every other core in 
just 1-hop

2. Broadcast: Local changes in 
the cache of a core can be 
instantaneously replicated at 
all other cores with single 
packet transmission

Augment NoC with Millimeter-wave Transceivers



Prototypes of wireless NoC transceivers that deliver multi-Gbps 
links while imposing low overhead

80
0 

um
1300 um

60 GHz Fully Integrated 
Transceiver System

Board Assembly with Folded 
Dipole Antenna

1 Gbps 60 GHz OOK 
Transceiver



1 Gbps 60 GHz OOK Transceiver

Prototypes of wireless NoC transceivers that deliver multi-Gbps 
links while imposing low overhead

80
0 

um

1300 um

40
0 

um

450 um

6 Gbps 90 GHz Transceiver

53
0 

um

477 um

18.7 Gbps 60 GHz OOK Demodulator

Board Assembly with Folded Dipole Antenna

IEEE EuMIC
2014

IEEE JSSC 
2010

IEEE Trans 
Circuits Syst I 

2015

IEEE JSSC 
2010



Traffic patterns can change drastically across different cores, 
difference time intervals, and different applications

A Key Bottleneck is Efficient Medium Access Design
A. Adapting to Dynamic Traffic Patterns

2000 4000 6000 8000 10000
Time (Clock Cycles)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

C
or

e 
ID

(i) PageRank



Time (Clock Cycles)

C
or

e 
ID

Multiapplication Jobsets

4-core 
BFS

4-core 
CC

Must prioritize Core 16’s traffic 

A. Adapting to Dynamic Traffic Patterns
B. Complex Dependencies from Synchronization Primitives

A Key Bottleneck is Efficient Medium Access Design

• Barriers and locks lead to non-trivial relationship between delivery time of 
packet on NoC and progress of execution



Time (Clock Cycles)

C
or

e 
ID

Multiapplication Jobsets

4-core 
BFS

4-core 
CC

Barrier Point
Must prioritize Core 16’s traffic 

A. Adapting to Dynamic Traffic Patterns
B. Complex Dependencies from Synchronization Primitives

A Key Bottleneck is Efficient Medium Access Design

• Barriers and locks lead to non-trivial relationship between delivery time of 
packet on NoC and progress of execution



4-core 
BFS

4-core 
CC

Must prioritize Core 16’s traffic 

A. Adapting to Dynamic Traffic Patterns
B. Complex Dependencies from Synchronization Primitives

A Key Bottleneck is Efficient Medium Access Design

• Barriers and locks lead to non-trivial relationship between delivery time of 
packet on NoC and progress of execution

Traditional MAC protocols treat each packet as equally important



Must prioritize Core 16’s traffic 

A. Adapting to Dynamic Traffic Patterns
B. Complex Dependencies from Synchronization Primitives

A Key Bottleneck is Efficient Medium Access Design

• Barriers and locks lead to non-trivial relationship between delivery time of 
packet on NoC and progress of execution

4-core 
BFS

4-core 
CC

Hand-Tuned protocols cannot optimize for these complex hard-to-
model dependencies



Can we learn protocols that can adapt to 
dynamic traffic while optimizing for complex 

dependencies?



NeuMAC

Leverages Deep RL to generate new MAC protocols that 
can learn structure in traffic patterns and dynamically 

adapt the protocol



Design Constraints:
1. Can’t run deep inference every CPU time slot

• Past work on RL for MAC does inference per packet 
[ICA3PP 2013, IEEE J-SAC 2019, Computer Communications 2020, Electronics 2020]

2. Versatile enough to emulate large span of protocols

3. Should use reasonable number of parameters

Translation of Deep RL output to a MAC protocol



NeuMAC’s 2 Layer Parameterized Protocol
• First Layer: Underlying TDMA schedule 

Clock Cycles

Deterministic 
TDMA 

Scheme

2-Layer Protocol Design

t = 1 t = 2 t = 3 t = 4 t = 8

…

t = 9

…



NeuMAC’s 2 Layer Protocol Design 
• Second Layer: Probabilistic CSMA schedule Overlayed

• NeuMAC assigns contention probabilities pi to cores for opportunistic channel capture

• Number of parameters is restricted to N for an N core processor

Clock Cycles

Deterministic 
TDMA 

Scheme

2-Layer Protocol Design

t = 1 t = 2 t = 3 t = 4 t = 8

…

t = 9

Probabilistic 
CSMA 

Scheme
Overlayed

p2p1

p4

p3

p5

p7

p6

p9p8

p2p1

p4

p3

p5

p7

p6

p9p8

p2p1

p4

p3

p5

p7

p6

p9p8

p2p1

p4

p3

p5

p7

p6

p9p8

p2p1

p4

p3

p5

p7

p6

p9p8

p2p1

p4

p3

p5

p7

p6

p9p8

…

…



p5 p6

p8

p4

p3

p7

p2

p9 p8

p2…
p2p1

p4

p3

p7 p9p8

p1

p4

p3

p5

p7

p6

p9

p2p1

p4

p3

p5

p7

p6

p9

p2p1

p4

p3

p5

p7

p6

p9p8

p2p1

p5 p6

p9p8

p1

p4

p3

p5

p7

p6

p8

NeuMAC’s 2 Layer Protocol Design 
• All pi = c > 0 à CSMA Protocol with tunable aggresion

Clock Cycles

Deterministic 
TDMA 

Scheme

2-Layer Protocol Design

t = 1 t = 2 t = 3 t = 4 t = 8

…

t = 9

Probabilistic 
CSMA 

Scheme
Overlayed

…

…



p5 p6

p8p8

p4

p7

p6

p3p2

p9

p2…
p2p1

p4

p3

p7 p9p8

p1

p4

p3

p5

p7

p6

p9

p2p1

p4

p3

p5

p7

p6

p9

p2p1

p4

p3

p5

p7

p6

p9p8

p2p1

p5 p6

p9p8

p1

p4

p3

p5

p7 p8

NeuMAC’s 2 Layer Protocol Design 
• All pi = c > 0 à CSMA Protocol with tunable aggresion

• All pi = 0 à Falls back to underlying TDMA Protocol

Clock Cycles

Deterministic 
TDMA 

Scheme

2-Layer Protocol Design

t = 1 t = 2 t = 3 t = 4 t = 8

…

t = 9

Probabilistic 
CSMA 

Scheme
Overlayed

…

…



NeuMAC’s 2 Layer Protocol Design 
• Can gracefully shift from TDMA to CSMA scheme while supporting all intermediate protocols

• Allows fine grained control to each core’s action so as to generate highly optimized protocols

p5 p6

p8

p4

p3

p7

p2

p9 p8

p2…
p2p1

p4

p3

p7 p9p8

p1

p4

p3

p5

p7

p6

p9

p2p1

p4

p3

p5

p7

p6

p9

p2p1

p4

p3

p5

p7

p6

p9p8

p2p1

p5 p6

p9p8

p1

p4

p3

p5

p7

p6

p8

Clock Cycles

Deterministic 
TDMA 

Scheme

2-Layer Protocol Design

t = 1 t = 2 t = 3 t = 4 t = 8

…

t = 9

Probabilistic 
CSMA 

Scheme
Overlayed

…

…



Design Constraints:
1. Can’t run deep inference every CPU time slot

2. Versatile enough to emulate large span of protocols

3. Should use reasonable number of parameters

Translation of Deep RL output to a MAC protocol



Policy Network

Passively Observes State st

NeuMAC Agent Wireless Network-on-Chip

RL Formulation

…

p1
p2
p3

p8
p9

p

Action at



Policy Network

NeuMAC Agent Wireless Network-on-Chip

RL Formulation

p1 p2 p3

p8 p9

p4 p5 p6
p7

Passively Observes State st

Action at



Policy Network

NeuMAC Agent Wireless Network-on-Chip

RL Formulation

p1 p2 p3

p8 p9

p4 p5 p6
p7

Passively Observes State st+1

Action at



Policy Network

Reward rt

NeuMAC Agent Wireless Network-on-Chip

rt

RL Formulation

RL Model 
Update

p1 p2 p3

p8 p9

p4 p5 p6
p7

We use end-to-end execution time as reward rt instead of network metrics

Passively Observes State st+1

Action at+1

Learning 
Update



Evaluation

•We implemented NeuMAC on a 64 core multiprocessor using a 
cycle-accurate architectural simulator, Multi2sim

• To evaluate NeuMAC’s generalizability, we test on 9 different 
applications from diverse domains using k-fold cross validation



End-to-End Execution Time Speedups

 1

 1.2

 1.4

 1.6

 1.8

Over CSMA Over TDMA

 1

 1.2

 1.4

 1.6

 1.8 1.69x

1.33x

CC BFS
PageRnk

SSSP
Volrend

Strm
Clstr

Canneal
BdyTrck

Commnty



End-to-End Execution Time Speedups

 1

 1.2

 1.4

 1.6

 1.8

Over CSMA Over TDMA

 1

 1.2

 1.4

 1.6

 1.8

CC BFS
PageRnk

SSSP
Volrend

Strm
Clstr

Canneal
BdyTrck

Commnty

3.74x



End-to-End Execution Time Speedups

 1

 1.2

 1.4

 1.6

 1.8

Over CSMA Over TDMA

 1

 1.2

 1.4

 1.6

 1.8

CC BFS
PageRnk

SSSP
Volrend

Strm
Clstr

Canneal
BdyTrck

Commnty

3.74x

NeuMAC can achieve up to 1.69x to 3.74x speedup over baselines



• N

• Similar trends over Optimal CSMA and Adaptive Switching – 1.37x to 
1.56x speedups

• Scaling up to 1024 cores, NeuMAC improves throughput up to 64x 
and reduces latency by 3 orders of magnitude

End-to-End Execution Time Speedups

 1

 1.2

 1.4

 1.6

 1.8

Over CSMA Over TDMA

 1

 1.2

 1.4

 1.6

 1.8

CC BFS
PageRnk

SSSP
Volrend

Strm
Clstr

Canneal
BdyTrck

Commnty

3.74x

NeuMAC can achieve up to 1.69x to 3.74x speedup over baselines



• NeuMAC can learn and adapt to highly dynamic and 
complex traffic patterns at a very fine granularity 

• NeuMAC achieves 1.37x-3.74x application speedup, 
and can scale the gains with the number of cores

• mmWave NoCs opens up a new paradigm in chip 
interconnect designs, and allows programmers to 
overhaul the way parallel programs are written

To conclude



Thank You!

Contact: sjog2@illinois.edu


