
University of Illinois at Urbana-Champaign

CS598PS Machine Learning for Signal Processing - Project Report

Detection of Wireless Traffic Bandwidth for Automatic
Communication Protocol Selection in Wireless

Network-on-Chip Systems

Vimuth Fernando, Antonio Franques, Keyur Joshi
{wvf2, franque2, kpjoshi2}@illinois.edu

January 11, 2020

Contents

1 Introduction 2

2 Background 3
2.1 Wireless Network-on-Chip . 3
2.2 MAC Background . 3

3 Input Data 5

4 Methodology 7
4.1 Nature of Data . 7
4.2 Labeling the Data . 7
4.3 Splitting Data into Training / Testing Sets . 7
4.4 Dimensionality Reduction . 7
4.5 Classification . 8
4.6 Using Predictions in the Simulator . 8

5 Experimental Results 9
5.1 Evaluation of the Prediction Algorithm . 9
5.2 Impact of the Prediction Outcome to Real Application Traces 9

6 Conclusions 11

1

1 Introduction

Recent computer architecture trends herald the arrival of massive multiprocessors with more
than a thousand cores within a single chip. In this context, as parallel programs continue
to increase the amount of data sharing and signaling between cores, on-chip communication
becomes a critical issue. Unfortunately, traditional on-chip networks have been proven to
not scale well in terms of latency or energy consumption, slowing down the computation in
multicore processors. The Wireless Network-on-Chip (WNoC) paradigm holds considerable
promise for the implementation of on-chip networks that will enable such massive multicore
chips.

One proposed method of implementing a WNoC is to augment each core on a chip with a
transceiver and an antenna that uses a wireless channel to send and receive messages across
the chip. A major challenge for this technique resides in the design of methods that provide
fast and efficient access to the wireless channel while adapting to the constant traffic changes
within and across applications. Existing approaches are either cumbersome or do not provide
the required adaptivity.

To fully realize the tremendous potential of WNoC it is necessary to build Medium Access
Control (MAC) mechanisms able to cope with the heterogeneity and stringent performance
requirements of the multiprocessor scenario [1]. The MAC protocol needs to adapt to wild
changes in the generated traffic, which can follow different patterns, while incurring little to
no delay on the transmission.

A key insight towards that goal is that applications tend to have certain “behaviors” that
can be exploited to boost the efficiency of the system. These behaviors can be used to classify
the runtime of the program into communication, or computation phases. The communication
phases consist of intensive usage of the network, with many nodes attempting to transmit
at the same time. On the other hand, computation phases consist predominantly of local
computations, and therefore show sparse traffic in the network. Different MAC protocols can
be used to ensure optimal network usage in the two phases.

In this project we present a new algorithm, capable of dynamically adapting
the MAC protocol to the characteristics and demands of the WNoC for every
application, minimizing the transmission latency of all nodes, and increasing the
overall throughput of the chip. We achieve that goal by combining the bene-
fits of collision-free (Token-Ring) and contention-based (BRS [2]) protocols, and
automatically detecting the phases in which it is best to use one over the other.

The rest of the report is organized as follows: Section 2 provides a brief background on the
topic in which our classification algorithm will be applied. In Section 3 we perform a study on
a set of multi-threaded representative applications. Section 4 explains the algorithm capable
of detecting and predicting the different traffic phases, and Section 5 presents the experimental
results. Finally, Section 6 concludes the report with a summary and some final remarks.

2

2 Background

2.1 Wireless Network-on-Chip

Wireless technology can enable us to reduce chip-wide latency to a few processor clock cycles,
regardless of the size of the chip or the number of cores. To that end, one antenna and
transceiver is co-integrated with each core or small cluster of cores, as shown in Fig. 1.
Information coming from the cores is modulated and the resulting signals propagate through
the chip package, bouncing off the metallic heat sink and reaching the receivers. The relatively
high losses of the bulk silicon prevent the enclosed package from acting as a reverberation
chamber [3].

Antennas are either variants of planar integrated dipoles [4, 5] or vertical monopoles im-
plemented with vias that are drilled through the silicon die [6, 7]. In both cases, the operating
frequency is chosen within the mm-wave and sub-THz spectrum to minimize the antenna size
and avoid undesired near-field coupling. Further, simple modulations such as On-Off Keying
(OOK) are often considered to avoid power-hungry components such as Phase-Locked Loops
(PLLs) in the pathway to minimizing power consumption (towards 1 pJ/bit/cm) and chip
area (towards 0.1 mm2 per transceiver) while maintaining relatively high speeds (10+ Gb/s)
[8, 9, 10, 11, 12]. The link budget is performed generally assuming a target Bit Error Rate
(BER) below 10-12, seeking to be as reliable as regular on-chip wires.

PCB

Insulator Bulk Silicon

Micro-bumps

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Core

Cache
memT

ra
ns

ce
iv

er

Antenna

Heat Sink

Antennas

Figure 1: Schematic diagram of a Wireless Network-on-Chip (WNoC) within a conventional
flip-chip package with one vertical monopole and transceiver per core.

2.2 MAC Background

Our prediction model switches between two previously existing MAC protocols, Token-Ring
and BRS-MAC [2]. We provide a brief background on each of them.
Token-Ring: takes its name from the fact that implements a virtual ring, as shown in Figure
2. In this ring, only the node possessing the token is able to transmit.The MAC module of each
node is connected to the ring through a register controlled by a seize bit, which is enabled when
the node wants to transmit. The token is passed in either clock-wise or counter-clock-wise up
to the first node that has its seize bit set. In wireless, the token is implicitly passed at the end

3

of a successful packet transmission, or whenever a slot goes unused.
BRS-MAC: a contention-based non-persistent MAC protocol based on collision avoidance.
Similarly as in CSMA/CA, when a node is ready to send data, it listens to the medium and
only transmits if the medium is idle. Otherwise, it waits during a backoff period and checks
again whether the medium is idle. However, instead of transmitting the whole packet at
once and then waiting for either a timeout (in case of a collision or a wrong checksum) or
an acknowledgment (ACK), as in CSMA/CA, here only the preamble of the packet is sent
at first, and is then followed by a short listening time, such that in case of a collision, the
detecting nodes send a negative acknowledgment (NACK) that will prevent the transmitter
from transferring the rest of the packet, and forcing it to enter into a backoff period. If no
NACK is received during the listening time, the transmitter proceeds with the rest of the
packet, assuming that all other nodes are aware of the transmission, and therefore they will
remain silent. Notice that by using this intermission mechanism, BRS-MAC does not require
the use of ACKs, which makes it very suitable for broadcast-oriented scenarios.

Figure 2: Physical distribution of the nodes (left) together with a possible virtual token ring
configuration (right)

4

3 Input Data

In order to obtain our data we used Multi2Sim [13], which is a cycle-accurate architecture and
microarchitecture simulator that is able to model a full processor and its cache hierarchy. The
system configuration used for our measurements is presented in Table 1.

Table 1: Architecture modeled. RT means round trip.

General Parameters

Chip 64 cores at 22nm technology
Core Out of order, 2-issue wide, 1GHz, x86 ISA
ROB; ld/st queue 64 entries; 20 entries
L1 I+D caches Private 32KB WB, 2-way, 2-cycle RT, 64B lines
L2 cache Shared with per-core 512KB WB banks
L2 bank 8-way, 6-cycle RT (local), 64B lines
Cache coherence MOESI directory based
On-chip network 2D-mesh, 4 (default), 2 or 1 cycles/hop, 128-bit links
Off-chip memory Connected to 4 mem controllers, 110-cycle RT

Wireless Network Parameters

Per-core wireless memory 512KB, 6-cycle RT, 64-bit wide line
Wireless channel 20Gb/s; 1 cycle for collision detection
Baseline MAC protocols BRS (exponential backoff), token passing in ring

The workload used to generate the features was composed of 7 representative benchmarks
from the SPLASH-2 and Crono suites. These benchmarks, listed in Table 2, were handpicked
to include a wide range of different scenarios, in order to make our predictor more robust
against unseen applications.

Table 2: Summary of the applications.

Name Description Input

Water [14] Water molecules simulation (nsquared) 1000 molecules, 10 steps
BFS [15] Breadth-first search p2p-gnutella31 (from [16])
Pagerank [15] Compute pagerank for nodes in a graph p2p-gnutella31 (from [16])
CC [15] Find connected components of a graph p2p-gnutella31 (from [16])
Community [15] Compute modularity of a graph p2p-gnutella31 (from [16])
Ocean [14] Large-scale ocean movements simulation 258× 258 grid
FFT [14] Fast Fourier Transform 216 complex data points

In order to capture fine-grained behavior of the system we modified Multi2sim and added
a function that automatically samples and saves into a file the occurrences for the following
29 events at every 10 microsecond (10,000 cycle) interval, referred to as a “window”. The
concatenation of these events for the current and previous windows are the actual
features we use for our model:

• L1 instruction cache: total number of accesses, read hits, read misses

• L1 data cache: total number of accesses, read hits, read misses, write hits, write misses

5

• L2 cache: total number of accesses, read hits, read misses, write hits, write misses

• Main memory: total number of accesses, reads, writes

• Wireless memory: total number of accesses, reads, writes

• Wired network-on-chip: number of transfers

• Wireless network-on-chip: number of transfers, collisions

• Functional units: number of accesses to the integer adder, integer multiplier, integer
divider, effective address calculator, etc.

Figure 3 presents a subset of the features gathered from the processor and the memory
system. Specifically, it shows the write occurrences to the wireless memory. The X-Axes
show the cycle at which the write occurred, while the Y-Axes show the core that performed
the write. Each of these writes end up producing a packet that will be sent through the
wireless network-on-chip. As we can see in Figure 3, on-chip traffic is highly heterogeneous,
meaning that the load (packet injection rate), burstiness (amount of packets sent in a row) and
hotspotness (spatial distribution of the packets) of the network vary across applications, and
even across the different phases of a single application. Detecting these patterns and organizing
the accesses to the medium as efficiently as possible is crucial for the overall performance of
the application, as inefficient wireless medium use can lead to excessive application latency.

(a) BFS (b) Community

(c) FFT (d) Pagerank

Figure 3: Packet injection traces for several SPLASH-2 benchmarks with 64 cores, showing
intra- and inter-application traffic differences across the execution.

6

4 Methodology

Figure 4: Block Diagram of our Classifier

We now present the methodology used to model our Medium Access Control (MAC) proto-
col predictor. This includes the separation of all the gathered data into the training and testing
sets, labeling of the training data, dimensionality reduction of our features, and classification.
Figure 4 shows a block diagram summarizing our classification approach.

4.1 Nature of Data

Our combined training / testing dataset consists of a set of feature vectors with the corre-
sponding labels. Each feature vector is a concatenation of the 29 features of the current and
the previous window, producing a total of 58 features. We found that adding additional pre-
vious windows did not cause any significant increase in accuracy. The corresponding label is
the ideal MAC protocol for the next window.

4.2 Labeling the Data

To label our training / testing feature vectors, we counted the number of collisions that occurred
in each window. We set a threshold of 250 collisions for using BRS. If the number of collisions
is below this threshold, then there is not too much contention for the wireless bandwidth,
and the ideal MAC protocol for this window is BRS. If the number of collisions is above this
threshold, then then the Token-Ring protocol should be used instead to avoid excessive latency.
We experimented with other thresholds, such as 100 collisions, and found this threshold to be
a good trade-off point between the two protocols.

4.3 Splitting Data into Training / Testing Sets

From our set of feature vectors and their corresponding labels, we randomly picked 20% to be
the testing dataset, and used the remaining 80% as a training dataset. We also experimented
with different random seeds to create different training / testing splits for validation of our
results across multiple testing sets.

4.4 Dimensionality Reduction

As an initial step, we used PCA to reduce the number of feature dimensions from 58 to 6. We
experimented with different numbers of principal components and settled at 6 as that was the
point where the accuracy increase as a result of adding more dimensions became insignificant.
We used our own implementation of PCA – the implementation we used for homework 2&3.

7

4.5 Classification

Next, we trained a Näıve Bayes classifier on the dimension-reduced training dataset. We used
a full covariance matrix for the classifier. Finally, we used the trained classifier to predict the
label for each feature vector in the test set. We found that adding a small probability bias
towards the BRS class slightly improved accuracy. This is in line with our observation that the
number of windows that should use BRS is greater in our dataset than the number of windows
that should use Token.

4.6 Using Predictions in the Simulator

To evaluate the performance impact of our prediction algorithm within the scope of a full
manycore, we build a wireless architecture simulator that can be plugged to Multi2sim. This
allows us to reuse the same real application traces that we described in Section 3, to later
feed to the network emulation part of the simulator. These traces are used to obtain the
latency statistics of the two static MAC protocols (BRS and Token) compared to ours, and in
the case of our protocol, they are used in conjunction with the window-by-window prediction
coming out of our classifier (Figure 4). This window-by-window prediction is also fed to our
network emulator, so that at the beginning of each interval we can switch to the predicted
MAC protocol, and eventually gather the average packet latency resulting from using such a
switching protocol approach as opposed to a static protocol approach.

8

5 Experimental Results

5.1 Evaluation of the Prediction Algorithm

The result of the classification on a execution of the Pagerank benchmark is presented in
Figure 5. The top plot compares the evolution of the predicted protocol versus the one we
determined to be ideal (as labeled in Section 4.2). The X-Axis is the window number and
the Y-Axis is the selected protocol. Here we can observe the high accuracy with which our
prediction algorithm matched the one we were expecting to get, for each window. In the
bottom plot of Figure 5, we can visually inspect how our classifier decided between the two
protocols. The X-Axis is again the window number and the Y-Axis is the log probability of
selecting a protocol. The plot shows that even though there are some windows for which it is
significantly easier to choose BRS (windows with very sparse traffic), this is not so much the
case for Token, since Token is always a very fair protocol anyway, and even in windows with
sparse traffic would not be too detrimental to use. This would no longer be true in bigger
chips, where the waiting time for the token to arrive at each node would also be bigger.

Table 3: Confusion matrix of our prediction algorithm

Predicted Protocol
BRS Token

Ideal BRS 0.9690 0.0310
Protocol Token 0.2606 0.7394

These results lead to the confusion matrix presented in Table 3, which shows that we can
predict BRS windows correctly 96.9% of the time, and Token windows correctly 73.9% of the
time.

5.2 Impact of the Prediction Outcome to Real Application Traces

Networks are evaluated on the basis of the average latency of packets, which is defined as the
time between the moment in which they are added to the input buffer, until the moment they
are correctly received. Since the processor is governed by a global processor clock, the latency
is expressed in clock cycles.

Figure 6 shows the speedup in terms of packet latency of our prediction algorithm with
respect to the other static MAC protocols. Notice that since the vertical axis depicts the
relative average packet latency with respect to our prediction algorithm, the higher the value,
the worse it is with respect to our design. This plot exemplifies the strengths of our algorithm,
which consistently provides a latency similar to the best of the two protocols. On average, the
latency provided by our prediction algorithm is 1.82× lower than BRS and 1.22× lower than
Token.

Applications such as Ocean-NC or FFT have a relatively low load and, as such, to-
ken performs poorly. Other applications such as BFS, CC, Community, or Pagerank are
communication-intensive and inherently bursty. As a result, BRS shows a latency up to 3.67
times higher than our model. In some cases such as Water or FFT, our prediction method even
outperforms both BRS and token, since the traffic for those applications heavily alternates be-
tween different types of patterns, and therefore switching to the right protocol at each window

9

Figure 5: Evolution of the difference between the predicted and ideal protocol (top figure), and
probability of choosing either BRS or Token (bottom figure), for each window of the Pagerank
benchmark.

proves to be consistently better than using either of the two protocol statically throughout the
whole application.

3.67 2.90 1.821.68 1.77

R
el

at
iv

e
av

g.
 p

ac
ke

t l
at

en
cy

0.00

0.50

1.00

1.50

BFS Ocean-NC CC Community Pagerank Water FFT Average

BRS Prediction Token

Figure 6: Average packet latency, normalized to our prediction algorithm, for different appli-
cation traces.

10

6 Conclusions

In this project we have presented a prediction algorithm, capable of detecting patterns in
the execution of several representative benchmarks, and dynamically switching to the most
suitable MAC protocol for each of the fixed-size windows into which these applications are
divided. We have shown that with a relatively simple and common prediction scheme, our
prediction algorithm can achieve the low latency of contention-based protocols at low loads
and the high throughput of fair collision-free protocols such as token passing. We have evalu-
ated our protocol in a variety of real application traces, demonstrating an average speedup of
up to 1.82 times with respect to other state-of-the-art static protocols. Our contribution, to-
gether with other advances in the field of on-chip networking, prove the feasibility of detecting
communication/computation phases within and across applications, showing the benefits of
taking advantage of such information, and paving the way for scalable and efficient manycore
processors for general-purpose computing, machine learning acceleration, and data center and
high-end server processors.

References
[1] S. Abadal, A. Mestres, J. Torrellas, E. Alarcón, and A. Cabellos-Aparicio, “Medium access control in wireless

network-on-chip: A context analysis,” IEEE Communications Magazine, vol. 56, no. 6, 2018.

[2] A. Mestres, S. Abadal, J. Torrellas, E. Alarcón, and A. Cabellos-Aparicio, “A mac protocol for reliable broadcast
communications in wireless network-on-chip,” in Proceedings of the 9th International Workshop on Network on Chip
Architectures, 2016.

[3] X. Timoneda, S. Abadal, A. Franques, D. Manessis, J. Zhou, J. Torrellas, E. Alarcón, and A. Cabellos-Aparicio,
“Engineer the Channel and Adapt to it: Enabling Wireless Intra-Chip Communication,” arXiv preprint
arXiv:1901.04291, 2018. [Online]. Available: https://arxiv.org/pdf/1901.04291.pdf

[4] O. Markish, B. Sheinman, O. Katz, D. Corcos, and D. Elad, “On-chip mmWave Antennas and Transceivers,” in
NoCS, 2015, p. Art. 11.

[5] R. S. Narde, J. Venkataraman, A. Ganguly, and I. Puchades, “Intra-and Inter-Chip Transmission of Millimeter-Wave
Interconnects in NoC-based Multi-Chip Systems,” IEEE Access, vol. PP, pp. 1–1, 2019.

[6] X. Timoneda, S. Abadal, A. Cabellos-Aparicio, D. Manessis, J. Zhou, A. Franques, J. Torrellas, and E. Alarcón,
“Millimeter-Wave Propagation within a Computer Chip Package,” in Proceedings of the ISCAS ’18, 2018.

[7] V. Pano, I. Tekin, Y. Liu, K. R. Dandekar, and B. Taskin, “In-Package Wireless Communication with TSV-based
Antenna,” in Proceedings of the ISCAS ’19, 2019, pp. 19–21.

[8] C. W. Byeon, C. H. Yoon, and C. S. Park, “A 67-mW 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range
wireless communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 9, pp. 3391–3401,
2013.

[9] Z. Wang, P. Y. Chiang, P. Nazari, C. C. Wang, Z. Chen, and P. Heydari, “A CMOS 210-GHz fundamental transceiver
with OOK modulation,” IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 564–580, 2014.

[10] X. Yu, S. P. Sah, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo, “A 1.2-pJ/bit 16-Gb/s 60-GHz OOK Trans-
mitter in 65-nm CMOS for Wireless Network-On-Chip,” IEEE Transactions on Microwave Theory and Techniques,
vol. 62, no. 10, 2014.

[11] X. Yu, H. Rashtian, and S. Mirabbasi, “An 18.7-Gb/s 60-GHz OOK Demodulator in 65-nm CMOS for Wireless
Network-on-Chip,” IEEE Transactions on Circuits And Systems -I: Regular Papers, vol. 62, no. 3, 2015.

[12] S. Subramaniam, T. Shinde, P. Deshmukh, S. Shamim, M. Indovina, and A. Ganguly, “A 0.36pJ/bit, 17Gbps OOK
Receiver in 45-nm CMOS for Inter and Intra-Chip Wireless Interconnects,” in Proceedings of the SOCC ’17, 2017.

[13] R. Ubal, P. Mistry, D. Schaa, H. Ave, and D. Kaeli, “Multi2Sim: A Simulation Framework for CPU-GPU Comput-
ing,” in PACT, 2012.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 programs: Characterization and method-
ological considerations,” in ISCA, 1995.

11

https://arxiv.org/pdf/1901.04291.pdf

[15] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “CRONO: A benchmark suite for multithreaded graph algorithms
executing on futuristic multicores,” in IISWC, 2015.

[16] “Stanford Network Analysis Project snap.stanford.edu,” 2018.

12

	Introduction
	Background
	Wireless Network-on-Chip
	MAC Background

	Input Data
	Methodology
	Nature of Data
	Labeling the Data
	Splitting Data into Training / Testing Sets
	Dimensionality Reduction
	Classification
	Using Predictions in the Simulator

	Experimental Results
	Evaluation of the Prediction Algorithm
	Impact of the Prediction Outcome to Real Application Traces

	Conclusions

